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NOMENCLATURE

Roman Symbols

V)

Cp
Csl
Ce2

Hg -~ RS TR QW

o B

w a

Re

~
X

Area

Link coefficient

Convective flux at a cell face, damping coefficient
Specific heat at constant pressure

Coefficient of production of € in g-equation
Coefficient of destruction of € in e-equation
Coefficient in the eddy viscosity relation in k- model
Species molar concentration

Diffusive flux at a cell face

damping coefficient or blending factor

Covariant base unit vector

Contravariant base unit vector

Mixture fraction

Seal pressure force

Mass flux at a cell face

Acceleration due to gravity

Stagnation or total enthalpy

Static enthalpy, magnitude of a covariant base vector
V=1

Thermal conductivity, stiffness coefficient
Turbulent Kinetic Energy (TKE), stiffness coefficient
Turbulent length scale

Molecular weight, inertia coefficient

Mass, inertia coefficient

Number of moles of ith species

Rate of production of turbulent kinetic energy
Pressure

Heat flux

Universal gas constant

Reynolds number

Radius, position vectors
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T Temperature

T+ Normalized temperature in wall units

t time

U Contravariant component of velocity

u Cartesian component of velocity in x-direction
uj Cartesian component of velocity in it direction
Ug Friction velocity

u+ Normalized velocity in wall units

\Y% Velocity vector

\ Cartesian component of velocity in y-direction
w Cartesian component of velocity in z-direction
X Cartesian coordinate

mole fraction of itk species

mass fraction of th species

Cartesian coordinate

Normalized distance from the wall in wall units
Cartesian coordinate

N X

Greek Symbols

a Direction cosine

B Direction cosine, parameter in Osher-Chakravarthy scheme
r Diffusion coefficient

Y Direction cosine

€ Rate of turbulence dissipation

n Curvilinear coordinate

) Curvilinear coordinate

o Generic transport variable

X Von-Karman constant

B Molecular (laminar) dynamic viscosity
Mt eddy (turbulent) dynamic viscosity

v Molecular (laminar) kinematic viscosity
Vi eddy (turbulent) kinematic viscosity

g Curvilinear coordinate

p Density
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Subscripts

g0 ZrT 0

=
N

Superscripts

o]

Laminar Prandtl or Schmidt number, scattering coefficient
Turbulent Prandtl or Schmidt number, scattering coefficient
Shear stress tensor

Wall shear stress

frequency, spin speed

Whirl speed

Curvilinear coordinate

Node or cell on the East side

Cell face on the East side

Cell or nodal index in § direction
Cell or nodal index in 1 direction
Cell or nodal index in { direction
Node or cell on the North side
Cell face on the North side
Node, cell center, or control volume
Node or cell on the South side
Cell face on the South side

Node or cell on the West side
Cell face on the West side
Cartesian y and z directions

Time level
Wall units
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1.0 INTRODUCTION

NASA'’s advanced engine programs are aimed at progressively higher efficiencies,
greater reliability, and longer life. Recent studies have indicated that significant
engine performance advantages can be achieved by employing advanced seals, and
dramatic life extensions can also be achieved. Advanced seals are not only required
to control leakage, but are necessary to control lubricant and coolant flow, prevent
entrance of contamination, inhibit the mixture of incompatible fluids, and assist in
the control of rotor response.

Recognizing the importance and need of advanced seals, NASA, in 1990, embarked
on a five-year program (Contract NAS3-25644) to provide the U.S. aerospace
industry with computer codes that would facilitate configuration selection and the
design and application of advanced seals.

The program included four principal activities:

1. Development of a scientific code called SCISEAL, which is a
Computational Fluid Dynamics (CFD) code capable of producing full
three-dimensional flow field information for a variety of cylindrical
configurations. The code is used to enhance understanding of flow
phenomena and mechanisms, to predict performance of complex
situations, and to furnish accuracy standards for the industrial codes.
The SCISEAL code also has the unique capability to produce stiffness
and damping coefficients that are necessary for rotordynamic
computations.

2. Generation of industrial codes for expeditious analysis, design, and
optimization of turbomachinery seals. The industrial codes consist of a

series of separate stand-alone codes that were integrated by a
Knowledge-Based System (KBS).

3. Production of a KBS that couples the industrial codes with a user
friendly Graphical User Interface (GUI) that can in the future be

NASA/CR—2004-213199/VOL 6 1



integrated with an expert system to assist in seal selection and data
interpretation and provide design guidance.

4. Technology transfer via four multiday workshops at NASA facilities
where the results of the program were presented and information
exchanged among suppliers and users of advanced seals. A Peer Panel

also met at the workshops to provide guidance and suggestions to the
program.

This final report has been divided into separate volumes, as follows:

Volume 1: Executive Summary and Description of Knowledge-Based System

Volume 2: Description of Gas Seal Codes GCYLT and GFACE

Volume 3: Description of Spiral-Groove Codes SPIRALG and SPIRALI

Volume 4: Description of Incompressible Seal Codes ICYL and IFACE

Volume 5: Description of Seal Dynamics Code DYSEAL and Labyrinth Seal
Code KTK

Volume 6: Description of Scientific CFD Code SCISEAL

This report summarizes the work performed on the Scientific Seals code (SCISEAL)
under NASA Contract NAS3-25634, during the period of February 1990 to May 1995.
The work for the first three years (February 1990 — September 1993) consisted of
development of the single domain version of SCISEAL. Starting from REFLEQS-3D,
a 3D code developed by CFDRC, several capabilities were added, which included
Colocated grids, rotating frames, moving grids, high-order differencing and 2-layer
turbulence models. Two rotordynamic coefficient calculation modules were added
(whirling rotor method and N-S perturbation method), as well as other seal specific
modules and boundary conditions. The preprocessor SCIPRE was modified to
include automated grid generation capabilities for cylindrical seals. During the
period of October 1994 — May 1995, upon recommendations from CFDRC, MTI and
the Peer Review Committee, the code was enhanced by incorporation of multi-
domain capability, ability to treat 2D and 3D problems, and extension of the

rotordynamics modules to multi-domain format; this is the current status of
SCISEAL.

NASA/CR—2004-213199/VOL 6 2



2.0 CAPABILITIES

The objective of this task is to develop a 3-D CFD code for the analysis of fluid flows
and forces in a variety of seals including cylindrical seals (tapered, annular, stepped)
labyrinth seals, rim seals, tip seals and face seals. This code is to serve as a tool for
detailed, and accurate analysis of flows in existing seal design as well as new concept
seals. It can also be used as an accuracy check for the simplified Industrial codes
which use simplified models for fast turnarounds. Finally, SCISEAL can be used to
provide detailed flow analyses in secondary flow systems where seals are usually
coupled with other flow elements such as disk cavities. Such systems need to be

solved together and in a coupled manner, which is currently beyond the capabilities
of the seals codes based on the simplified flow models.

The solver module consists of two separate codes:

a. The preprocessor SCIPRE, which reads in an input file in a text format
and converts it into another file that is readable by the main flow
solver. The preprocessor has capabilities of grid generation, problem
setup, boundary condition setup and checks for internal consistency for
the problem as defined by the user in the input file. Detailed
descriptions of problem setup, command structure efc. is given in the
Users’ Manual for the SCISEAL code.1

b. Flow solver SCISEAL is the module which reads in the data files
created by the preprocessor and does the flow computations. At the
end of execution of SCISEAL, a number of output files are created that
can be used for restarting a continuation run and plotting with
graphical packages; these files also contain information on code
convergence and integrated seal quantities. A description of the
various files also is given in the SCISEAL Users’ Manual.

21 Salient Features of SCISEAL

The flow solver, SCISEAL, was written in ANSI FORTRAN-77 with emphasis on
portability and modularity. The basic flow analysis methodology utilizes advanced

NASA/CR—2004-213199/VOL 6 3



numerical techniques for accuracy, efficiency and robustness. Features of the code

include:

Finite volume discretization for integration of Favre-averaged Navier-
Stokes (N-S) flow equations;

Implicit multi-domain treatment with one-to-one and one-to-many
cell connections at the interfaces;

Cartesian, polar, and non-orthogonal Body-Fitted Coordinates (BFC).
Colocated (non-staggered) grid;

Strong conservative form of momentum equations with Cartesian
components as dependent variables;

Stationary as well as rotating frames of reference for rotary flow
problems;

Pressure-based solution algorithm including a variant of SIMPLEC and
PISO, which allows the treatment of both incompressible and
compressible flows;

Concentrated and distributed porosity-resistivity technique for
treatment of internal solid objects;

High order spatial differencing schemes (including upwind, central,
MUSCL and Osher-Chakravarthy) and temporal schemes (Euler
backwards and Crank-Nicholson);

Steady-State and time-accurate solution capability;

A space-conserving moving grid formulation that allows the treatment
of moving-deforming grid systems encountered with whirling rotor;
and

Symmetric whole-field equation solvers based on Stone’s implicit
methods and a conjugate gradient squared solver for linear equation
solutions.

The SCISEAL code also has a variety of physical models that are needed in the
solutions of the flows encountered in seals. These models include:

JANNAF property tables for selected species, useful in tracer gas
simulations with passive scaler transport;

Variable viscosity with Sutherland’s Law;

Advanced turbulence models:

NASA/CR—2004-213199/VOL 6 4



22

- Mixing length model (Baldwin and Lomax)

- Standard k-e model with wall functions (Launder and Spalding)
- Low-Reynolds number k- model (Chien)

- 2-layer k-e model for rotating flows and for narrow flow passages
Isotropic surface roughness treatment; and

Comprehensive set of boundary conditions including seal specific
conditions such as:

- pre-swirl specifications

- entrance loss factor.

Rotor mi

The flow changes in seals due to rotor motion can generate significant fluid force
changes and affect the overall stability of the rotor system. This effect is introduced

through the seal rotordynamic coefficients, and two methods are available in
SCISEAL to calculate the coefficients:

Whirling rotor method: This method uses full CFD solutions for a
nominally centered rotor whirling in a circular orbit. the solution
method provides the skew-symmetric set of rotordynamic coefficients
associated with a centered rotor.

Small perturbation method: The N-S equations are perturbed to
generate 1st order flow equations that describe the flow changes due to
small rotor motions. These equations are solved to generate the full

set of rotordynamic coefficients. This method can be used to treat both
centered and eccentric seals.

Both of the methods are fully automated and can be invoked with simple
commands in the input file.

Several additional features that are available for seals problems are:

Easy grid generation setup for cylindrical seals;
Calculation of seal loads, torque and power; and

NASA/CR—2004-213199/VOL 6 5



. Facility to read externally created seal grids and use into flow as well as
rotordynamics modules.

The following section describes the treatment of flow equations, discretization
methods and boundary conditions treatment. Descriptions of the physical models
used in the code and the rotordynamics models follow the numerical models.

An extensive series of validation and demonstration problems were solved using
SCISEAL to assess the accuracy of the numerical and physical models and a list of |
these problems is included in Section 4, with a brief description and relevant results
for each of these problems.
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3.0 THEORY

3.1 Geometry and Flow-Domain Modeling

The SCISEAL code uses a structured grid approach to discretize a given flow
domain. Several powerful concepts have been built into the code to simplify the

grid generation procedure, optimize the cell numbers and allow for simpler
problem definition. these capabilities are:

a. Generalized non-orthogonal Body-fitted-coordinate (BFC) grids;
b. Multi-domain capability; and
c Internal blockage concept.

Given a complex flow domain, one or more of these capabilities can be utilized to
simplify the grid generation process for optimum and accurate flow solutions. This
section deals with geometry definition, BFC grids, multi-domain approach and the
internal blockage concept.

311 Geometry and Grid Generation

The seals code uses a finite volume approach, where the flow domain is discretized
into a number of cells or finite volumes and the flow equations are numerically
integrated over each finite volume. The discrete representation of the flow domain
in the computational grid. Furthermore, the grid needs to be of a structured form.
A grid is considered to be structured if there exists three grid lines (for a 3D problem)
to identify three distinctive directions and any face of a control volume is on two
grid lines. In other words, a single (i,j, k) index can be used to identify a cell or a
point of a structured grid.

The structured grids can further be divided into single block or multi-block types.
The single block (or domain) grid has only one set of i, j and k index axes over the
complete domain. A multi-block grid has several blocks with individual definitions
of i, j, and k axes, with interfaces at places where the blocks meet. The orientation of
the axes in the individual blocks is independent of the neighboring blocks. This
concept is illustrated in Figure 1.

NASA/CR—2004-213199/VOL 6 7



interface
Figure 1. Single and Multiblock Grid Concept

The ability to divide a complex flow problem into several domains is very powerful,
since this capability allows the user to use grids only on flow areas for optimum cell
numbers. In addition, the division of flow problem can be made such that the grids
stay as near orthogonal as possible, i.e. the grid quality can be improved. The
current capabilities include a one-to-one match as well as a one-to-multi match of
cells at the interface. This concept is shown in Figure 2.

® -

(a) one-to-one interface (b) one-to-many interface
Figure 2. Types of Interfaces Allowed in SCISEAL

The ability to locally refine the grids at domain interfaces further enhances the code
capabilities. Several seal applications have flow domains where a relatively large
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domain interfaces with a narrow domain, and the multi-to-one interface can be
used to provide sufficient resolution in the narrow passage, and also reduce the

number of cells in the large passage through a multi-to-one connection at the
interface.

3.1.2 Coordinate Systems

When solving complex flow problems, definition of curved boundary surfaces with
Cartesian rectangular grids is difficult and will result in accuracy loss. To be able to
follow curved lines/surfaces in the flow domain, the so-called body-fitted coordinate
(BFC) system is necessary. The BFC grids also have 2/3 coordinate axes, however
they may not necessarily be parallel to any Cartesian axes and may not be locally
orthogonal to each other. The SCISEAL code has the options to treat Cartesian,
orthogonal BFC as well as non-orthogonal BFC grids, and such grids can be used in
conjunction with the multi-domain capability. Cartesian grids require least storage

and yield highest accuracy, and non-orthogonal BFC grids require the highest
storage.

Mathematically, a BFC system can be viewed as a coordinate transformation from
physical domain to computational domain as illustrated in Figure 3 for a seal sector
grid. The 1 and { coordinates run along the radial and circumferential direction and
have a direct correlation with the j and k indices. The axial grid lines run along the
§ direction and are related to the i index. The grid is always represented in a
Cartesian system in the physical domain. The coordinate transformation converts
this curvilinear grid to an orthogonal grid in the transformed space.

§=¢xy. 2, n=n(xv2), {={(xy 2

or x=X({m, O y=Y(EN O, 2=Z(En. ¢ D
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Figure 3. An IDlustration of the Transformation from Physical to Computational

Domain for a Seal Sector Grid
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Therefore, each point on a physical domain can be identified by a triplet (x, y, 2).
This triplet is a function of &, 1 and { or is associated with a particular (i, j, k) index.
Thus SCISEAL works on a BEC grid system expressed on a_base Cartesian coordinate

system. Note that a physical domain is always transformed to a rectangular domain
as shown in Figure 3.

For future reference, a brief introduction of the BFC coordinate system is given
below. A comprehensive description of BFC coordinate system can be found in the
work of Thompson et al,2 For derivation convenience, (§; &, &3) is used to replace -
(¢, m, £). In a BFC coordinate system, (§;, &, £3), the covariant base vectors are
defined as

_oF .i_
Ej—a—f;']-l’z’“; )

where 7 is the displacement vector and is equal to x [+ Y f +zk ,and contravariant

base vectors are defined as

EyX83 2 a3 _
———] ,é———I ; 8= 7 3)

gl=

where ] is the Jacobian defined as | = (8; x ;) - €5 . Basically, & is a base vector along

¢; coordinate line and 2/ is a base vector normal to the surface formed by g. and
1

2,(i#j=k). Butnote that & and &/ are not unit bases and unit bases can be defined

as

it eio G - (3

and
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i
gl = é_ll (no summation on j) )

where h; is usually called scale factors.

It is easy to show that the covariant and contravariant base vectors satisfy the basic
relationship:

g gi-_.gi]. 6) -

where 5,-,- is the Kronecker delta.

In the BFC system, the gradient, divergence, curl, and Laplacian operators can be
expressed in conservative form as

Gradient V=7 35, U %
Divergence: v-V= % 58»‘:_,( U 7) ®)
Curl: VxV:%a—%F(jéka) ©)
Laplacian: v2f= % - ;; 3 [fe-e] (10)

The geometric meaning of the above quantities can be easily explained on 2D
curvilinear coordinates at point P as shown in Figure 4. For a BFC grid, the Jacobian
is simply the volume of each cell.
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Figure 4. Geometrical Meaning of Covariant and Contravariant Bases for a 2D

BFC System

3.1.3 Blockage Concept

In many engineering problems the boundaries of the flow problems can be very
complicated, and there can be internal solid obstacles. In some cases such obstacles
also need to be included for performing conjugate heat transfer analysis. Treatment
of such internal objects can either be done through using the multi-domain
approach or through using the so-called blockage concept. With blockage capability,
several parts of the flow domain can be excluded from the calculations or such
parts can be treated as solids, to be included in the flow calculations for conjugate
heat transfer. The blocked region concept is particularly useful in the treatment of

seals such as stepped cylindrical seals and labyrinth seals. A labyrinth seal is shown
in a section along the axis in Figure 5.
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Figure 5.  Cross-Sectional View of a Labyrinth Seal with Blocked Cells for Teeth
Region

In such a problem, a BFC grid can also be employed to cover the computational
domain, however, such a grid is difficult to generate, and will have very skewed
cells, especially near the corners, which can affect the solution accuracy. With the
blocked-cell concept a Cartesian orthogonal grid can be utilized. The computational
cells in the labyrinth seal teeth now can be treated as blocked-off or included in the
energy equation for conjugate heat transfer. In this case, use of orthogonal grid both
yields ease of grid generation, better accuracy and computational speed, although the
blocked cells do represent a penalty in terms of computational effort needed to treat
non-flow cells.

3.2 Basic Governing Equations

The fluid flows are simulated by numerically solving partial differential equations
that govern the transport of flow variables. These variables include mass,
momentum, energy, turbulence quantities, and mixture fractions. The variables for
which transport equations have to be solved will depend on the nature of the flow
problem. In this section, the basic governing equations for the conservation of
mass, momentum, energy are presented. The user will be introduced to the

transport equations for other flow variables such as turbulence quantities in a
following sub-section.

SCISEAL employs conservative finite-volume methodology and accordingly all the
governing equations are expressed in conservative form. Cartesian coordinate
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system and tensor notation are generally employed in which repeated indices imply
summation over all coordinate directions. The user should note that SCISEAL

solves the governing equations in cylindrical coordinate system for 2D axisymmetric
flow problems. Presented here are the flow equations that correspond to the 3D
representation.

3.2.1 Continuity Equation
In any fluid flow in which the continuum hypothesis holds mass conservation can
be expressed as

op 9
* a0 (an

where u; is the jth Cartesian component of the instantaneous velocity, and p is the
fluid density.

3.2.2 Momentum Equations
These equations are derived from the law of conservation of momentum.

2 2 __9p 9%
Wi)+?7j(puiuf)—'a_aci+§}7+pﬁ (12)

In the preceding equation p is the static pressure, 7; is the viscous stress tensor and

fi is the body force. The viscous shear stress, Tij, is related to the mean shear rate
(strain rate) tensor, y;, by

ou
Tij = BY= %“ax_:‘sii 13
where §;; is the Kronecker delta and

Yy (3? N ax—,-) (14)
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and pu is the fluid dynamic viscosity which, in general, can be a function of
temperature, species composition, position, shear rate, etc. If viscosity does not
depend on shear rate, the fluid is called Newtonian and ;; is a linear function of

velocity gradients
ou; Ou;\ o (Juy
& =#(a?; ¥ a?,-)‘ Su(3) (15)

Substitution of Equation (15) in Equation (12) results in the Navier-Stokes Equations

d d dp 9 ou; du\ 2 duy
éz(P“i)+-a;j(P“f“;)=-sx;+a—xj{“ (ag* &) 3 a0 (16)
3.2.3 Energy Equation

The equation for the conservation of energy can take several forms and different
forms are suitable for different classes of problems. In SCISEAL, the user may

choose either static enthalpy or stagnation enthalpy depending on the application.
The static enthalpy form of the energy equation can be expressed as

9q; 9p ap du;

0 d -
ﬁ(ph)*'é?j(pufh)_-gj*"ﬁ*'ufﬁi;ﬁ'r"fﬁ; 17)

Here, g; is the j-component of the heat flux. Fourier's Law is employed to model the
heat flux

T
qi=-K~- (18)

]

where K is the thermal conductivity. By algebraic manipulation, the heat flux can
be expressed in terms of the enthalpy gradient as shown below.

K _ dT oh

q.:-—c —=——r— -1
I=7C, Trox; ox; (19)
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Here C, is the fluid specific heat and I' is known as the diffusion coefficient and is
related to the fluid dynamic viscosity through the Prandtl number o.

K_u
F=z=% (20)
The static enthalpy equation can be rewritten as
J o, oo M
at(ph) ox; (puih)= Ej(r ax].)‘“  “Mide T ax @1)

Note that the above equation is not strictly conservative by its nature and is
recommended for incompressible and low Mach number flows. On the other hand,
the total enthalpy form of the energy equation is fully conservative and is
recommended for high speed compressible flows. The total enthalpy H is defined as

H=h+—l—’ 22)

and the governing equation for H is obtained by adding the fluid kinetic energy
equation to the static enthalpy equation

i gt B2 g Fdi o

3.2.4 Favre Averaged Equations

The fundamental equations of fluid dynamics that have been introduced in the

preceding sections are, in general, applicable to Newtonian fluid flow under steady
or transient, incompressible or compressible, laminar, transitional or turbulent
conditions. The nonlinearity of the Navier-Stokes equations, coupled with the
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complexity of the boundary conditions, makes it impossible to obtain analytical
solutions for all but a limited number of flows of engineering interest. Hence one is
forced to resort to approximate or numerical methods. As most engineering
applications only require time-mean quantities, the Navier-Stokes equations are
usually averaged over time or ensemble of statistically equivalent flows to yield
averaged equations. In the averaging process, a flow quantity ¢ is decomposed into

mean and fluctuating parts. The following two types of averaging are generally
used.

Reynolds (or time) Averaging:

p=p+¢ where 9=(1m) [ pat 4)
Favre (or density) Averaging:
9=+ where §=p¢/p (25)

Note that overbar denotes Reynolds averaging while tilde denotes Favre averaging.
The time period of averaging, T, should be large compared to the fluctuation time
scale so that mean quantities are stationary over a number of samples. The user also
should bear in mind that the mean quantities can vary in time on a scale much
larger than T.

Applying the Favre averaging procedure to Equation (11), we get the Favre-averaged
continuity equation

) 0
—a—t—+§(puj)=0 (26)

Similarly when the Navier-Stokes equations (Equation 12) are averaged, we obtain
the Favre-averaged Navier-Stokes (FANS) equations given below. (For detailed
derivation, see Cebeci and Smith3).

d (-~ 0 (-~ ~ ap a-a&i aﬁza{" 0 (-~
a(””f)’“‘a‘x;("”f“f)='$*5&;[“(&*5&'3#%}]@;0”%uj) @)
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The FANS equations contain less information than the full NS equations, but have

additional unknown terms - 5;:{,7 called the Reynolds stresses. These correlations
between the fluctuating components arise in the averaging process, and need to be
modeled to achieve closure of the FANS equations. All the turbulence models
available in SCISEAL employ the generalized Boussinesq eddy viscosity concept in

which the Reynolds stress — ,';Z;; is treated as a linear function of the mean strain
rate

B au au zau 2 _
P U =4, x 37'3'5‘;'% -3 Pk Yy (28)

Here y; is known as the turbulent eddy viscosity and k is half the trace of the
Reynolds stress tensor.

1 ——~

k== ukuk (29)

By substituting Equation (28) in Equation (27), we obtain the modeled FANS
equations

D mmy O pommy P
a(””f)J’a_xj(P“i“j) T T a

When the averaging procedure is applied to the static enthalpy equation, additional
terms containing fluctuating enthalpy and velocity components appear which are
generally modeled with the Boussinesq concept as follows

~

Ty al
—pujh =T~ (31)
)

The term I} is known as the turbulent or eddy diffusivity and is related to the
turbulent viscosity through the turbulent Prandtl number oz
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Hy

I'=—
‘o (32)

The mean total enthalpy equation is derived by adding the mean kinetic energy
equation to the mean static enthalpy equation. Without any formal derivation, the
modeled mean enthalpy equations are

i - D H\ op -op . o[ A 2N
ia?*éx';(ﬂuf’f)-é‘x‘j{(’“ﬂ)g;j}*ﬁ*“ﬁx‘.*(““”t)?,- Ea

(33)
P 3 rhrpgl_.0 oA\, 9 d (1 ap
7 + gg[p ujﬁ]— -'87]{(1-'+Ft)a—xj} + axj{(/l—l"+#t—1"t) ng(zakak)} + 3¢
o1, ou, .ou (34)
0 i i 27"k
*ax; {(ﬂ R, (xj NP Fr) 5@-)}

Various models differ in the way u; is estimated. The models employed in
SCISEAL are discussed in a subsequent section.

3.3 Discretization Methods

The fluid flows are governed by several physical conservation laws and these laws
can be written as Partial Differential Equations (PDE’s) as presented in Section 3.2 A
numerical method to solve these PDE’s consists of the discretization of the PDE’s on
a given grid, formation of corresponding linearized algebraic equations, and the
solution of the algebraic equations. This way, a final set of discrete numbers on a
grid is obtained which represents the numerical solution of the PDE’s. In this
section, the discretization of the governing equations is presented. The finite-
volume approach is adopted due to its attractive capability of preserving the
conservation property. In the following, the storage locations of the dependent
variables are first discussed. The discretization process then follows in more detail.
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3.3.1 Staggered Versus Colocated Grid A

A detailed description of this method was provided in the First Interim Report4 and
only a short description is given below for brevity. The staggered grid approach was
widely used for incompressible flow simulations in the past. With the staggered
grid approach, proposed by Harlow and Welch5, the velocity components are stored
at positions between the pressure nodes as illustrated in Figure 6a. Such an
approach ensures that the pressure is readily available for momentum equations
and velocity components are available for the continuity equation without
interpolation. As a result, a proper pressure coupling is guaranteed and the well- '
known checkerboard instability is prevented. However, the disadvantages of the
staggered grid approach are well known and the following are just two examples.

. It is not easy to extend the staggered grid approach to non-orthogonal
curvilinear grids. Several proposed extensions are extremely complex
to apply and can cause loss of accuracy.

. Many state-of-the-art CFD methodologies are difficult to apply with a

staggered grid approach such as multigrid, local grid refinement, and
multi-zoning.

The current state-of-the-art approach is based on the Colocated grid (or non-
staggered grid) proposed by Rhie and Chow$ and later by Peric.7? The grid
arrangement of this approach is illustrated in Figure 6b. This Colocated grid
approach has many advantages over the staggered grid approach and is used in the
seals code. This approach evaluates the cell face velocity using momentum
equations and consequently the cell face velocity is directly linked to a third-order
pressure derivative term. This linkage ensures that the checkerboard instability is
eliminated. With a Colocated grid approach and Cartesian components as
dependent velocity variables, many coding complications are avoided and more
accurate solutions can be obtained, particularly for viscous flows.
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Figure 6.  Illustration of Variable Storage Locations for: (a) Staggered; and
(b) Colocated Grid

3.3.2 A General Convection-Diffusion Equati
It is noted that all governing equations, except continuity equation, can be expressed
in a general form as

dpd dpud dpvd  dpwd 9 [~99) 9 (99 9 (9%
o TTax T oy Tz “ax(rax)““ay(ray)* 2rg)es, o

where ¢ can stand for Cartesian velocity components, total enthalpy, turbulence
kinetic energy, mass concentration, etc. I' is the effective diffusivity and S, is the
source term. Therefore, the above equation, in convection-diffusion form, will be
considered for discretization. The continuity equation has a different form, and will
be discussed in a later section.

First of all, Equation (35) needs to be transformed to BFC coordinates using the new
independent variable &(x, y, z), n(x, y, z), and {(x, y, z). Without detailed derivation,
it is sufficient to write down the transformed equation in (¢, 7, {) coordinates as
follows
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k

with
gk = g/. gk (37)

The discretization involves an integration of Equation (36) over a control volume as
shown in Figure 7. That is:

) 99
ﬁﬂ’ a,(Jpq>)+,aé:k(fp(v &) o} = §a—§k[r1g”‘a§]+s] Jdednd  (38)

In the next several sections, individual terms of the above integration will be
discussed.

=1
s

Figure 7. The Labeling Scheme of a Control Volume
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3.3.3 Transient Term
Consider the discretization of the transient term of Equation (36), i.e.,

T= gﬁ#,at(}w )-Jd§dndl =~ #j;(]pcp)dédnd;—w (39)

In the above, superscript “0” stands for a value at an old time, variables without “o0”
superscript are at the new time, and V stands for the volume. Note that the above
discretization holds true for both Euler first-order and Crank-Nicholson second-
order schemes.

3.34 nvection T nd Differen nvection Schem

By defining a physical contravariant velocity component Uk such that V=U* ¢, the

convection term can be rewritten as

Integration of the above term over a control volume gives
C=C,-Cpy+Cy-C + G- Cr= G0, - Gy, + Gy - G + Gy - Gty (41)

with G, defined, for example, as

G, =(h’ p ul) 42)

e

where G’s represent the mass flux through a face of the control volume. The upper-
case subscripts, W, E, S, N, L and H are used in this report to denote the neighboring
cell-centers on the west, east, south, north, low, and high sides of the control
volume shown in Figure 8. The lower-case subscripts w, e, s, n, I, and h, are used to
represent the corresponding cell faces of the control volume. The evaluation of the
mass fluxes, G, will be described in Section 3.4 while the evaluation of ¢ at control
volume faces is described next.
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For ease of illustration, consider the 2D control volume as shown in Figure 8
Because the flow variable ¢ is available only at the cell-centers, the cell-face values
of ¢ need to be interpolated. Various interpolation schemes with varying levels of
numerical accuracy and stability are in use today. In SCISEAL the user has a choice
of several popular schemes, each of which is illustrated below in the evaluation of
¢., the value at the east cell face.

Figure 8. A 2D Stencil for the Discretization of Convection and Diffusion Terms

3.3.4.1 First Order Upwind Scheme First order upwind approach will evaluate ¢,

using either ¢p or ¢¢ depending on the flow direction at point e. Mathematically it
can be expressed as

cur_[ G G0
e Gor if G,<0 (43)
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or in more convenient form as

¢E - ¢p
5 (44)

+
=g % g,
This scheme has first-order accuracy and is one of the most stable schemes.

3.3.4.2 Central Difference Scheme Pure central difference approach will evaluate ¢,
by averaging the values at point P and E. That is

og +4
CN=G, =5 (45)

It is widely known that pure central difference scheme may cause unphysical

oscillations. For most problems, some damping (or artificial viscosity) is needed for
stability. In practice, central difference scheme with damping is constructed as

C,=d,C4 +(1-d)CN (46)
with d., the damping coefficient, representing the fraction of upwind scheme used.

Equation (46) can be re-written as

¢p +¢E
2

¢E - ¢p
5 (47)

C.=G, -d,|G,]
Comparing Equation (47) with Equations (45) and (44), it is clear why the scheme is
called central differencing plus damping. d. = 0 yields the pure central scheme,

while d, = 1.0 results in the upwind scheme. In this report, central difference
scheme often refers to pure central plus the damping term as given above.

3.3.4.3 Second Order Upwind Scheme In this scheme, the cell face value is
evaluated using two upstream nodes. The cell convective flux is given by
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_|cd50e-Fow) iG>0

C
Ge(% ¢E‘%’¢EE) if G,<0

(48)

3.3.4.4 Smart Scheme with Minmod Limiter For the central differencing scheme,
the damping coefficient is constant for the entire domain. There are many flow
situations where damping is needed only in certain limited regions. Therefore,
smart scheme is designed to adaptively calculate damping coefficient depending on
the local flow property. The minmod limiter can be used to obtain damping
coefficient, d, as:

d_ = minimode (1,7 (49)
with
Pe-u—%-u .
Y = -—¢E-:6’;—— and U =sign (G,) (50)

The MINMOD function is defined as

MINMOD (., B) = sign (o) max [o, min (.|, B)]

This scheme will reduce to upwind scheme if there exists local extreme such as

across shocks (7 < 0), to central difference scheme when y,>1, and second order
upwind scheme for 0 <y, < 1.

3.3.4.5 Other High-Order Schemes For compressible flows with shocks, several
high-order schemes with limiters are very accurate for shock capturing. Three such
schemes are introduced in the following.

Osher-Chakravarthy Scheme: Osher-Chakravarthy scheme evaluates the damping
coefficient as

d, = -1-:2'—n-minmod([3, Yo + 1 ;_' Noninmod (1, By,) (51)
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withn:% and ﬁ=ﬁ

Roe’s Superbee Scheme: Roe’s Superbee scheme is used to obtain the damping
coefficient as

d, = Max[o, min (2y, 1), min (y, 2)] (52)

van Leer’'s MUSCL Scheme: van Leer's MUSCL scheme is used to obtain the
damping coefficient as

g = el +Ye

53
= +1) 53)

3.3.5 Diffusion Terms

The diffusion term in Equation (36) can be split into two parts: main diffusion
(j = k); and cross diffusion (j # k). Let's consider main diffusion first, i.e.

k1 9 kka_¢] -
Dy ]agk[r‘]g 3E;|" k=1,2,0r3 (54)

Without loss of generality, k = 1 term will be used for derivation. Integration of D}w
term over a control volume, as shown in Figure 7, leads to

f f f Dl Jd&ind¢ = [r]gﬂ g% - [r]gﬂ g—‘g]w (55)

It is easy to show that

n_A2___A
Jg" = ] hysin o (56)
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where A is the area of the control volume face along the & direction and «;

represents the angle between vector EI and the plane formed by Ez and 53. By
defining
¢ I-A

D’ = -
hlsma

(57)
1

we have
[[[ Py aganac=p}(8,-0,)-0](6, - 94)=-(0; + D))o, +D} 65 +D} 0, 5B

Therefore, D ¢, the main diffusion coefficient needs to be evaluated at the faces of
each control volume.

The cross diffusion term is written as

Consider D?! for illustration purposes

” p21 ]dgdnd;=(r}gﬂ -g-nql) (F}321 %"’) 60)

e ) w
By defining D= g— Jg?! and assuming ¢,, = % (0p + O + On + ONE) , etc., we have

J’_U DZ Jd&dnd{ = D oy + OnE - O - Osg) - D2 (9 + Onw - O - sw) (61)

Other cross terms can be similarly discretized.

3.3.6 Source Term
If the source term is a function of ¢ itself, it is linearized as
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Sy=SPp+SY (62)

such that SP is negative. In general, both SP and SY can be functions of ¢. They are
evaluated using the latest available value of ¢, which is generally taken to be the
value of ¢ at the end of previous iteration. The linearized source term is integrated
over the control volume which results in

S=Spp+ Sy (63)

where the coefficients Sp and Sy are given as follows
Sp=vsP (64a)

Sy=vsH (64b)

3.3.7 Finite Difference Equation
In Sections 3.3.3 to 3.3.5, the general convection-diffusion Equation (36) has been

discretized term by term over a control volume. If the numerically integrated
transient, convection, diffusion and source terms are assembled together, it results
in the following linear equation.

apfp = awdy + Apfp + ashs + anpy + AL f + apdy (65)
+agwlsw + aspbse + Anwdw + INEINE
+apsh s+ A NBN + AsPhs + ANHN
+awrbwr, + Awrdwh + SeL PeL + FEHPEH

+Su

The coefficients ap, aw, etc. are known as link coefficients, and the Equation (65) is
known as a finite difference equation (FDE). This equation is the discrete equivalent
of the continuous flow transport equation we started with. To summarize, the PDE
represented by Equation (36), when numerically integrated using the finite-volume
methodology, results in the FDE given by Equation (65).
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This FDE, in general, is nonlinear because the link coefficients themselves are
functions of ¢p, ¢w, etc. When an FDE is formulated for each computational cell, it
results in a set of coupled nonlinear algebraic equations. No direct matrix inversion
method is available to solve a set of nonlinear algebraic equations. Therefore an
iterative procedure is employed in SCISEAL at every time step. A linear FDE is
formed by evaluating the link coefficients with the values of ¢ available at the end
of previous iteration.

dp op* =y ol + S (66)

Here, the compact notations a,, and ¢ are used to represent the link coefficients
and the values of flow variable corresponding to the neighboring grid points. The
subscripts k and k+1 denote the previous and current iteration numbers
respectively. When the linear set (66) is solved, we have an improved estimate for
¢. This improved estimate is used to update the link coefficients ap, 2,5 and Sy and

the linear set is solved again. The iterative procedure is repeated until a converged
solution is obtained.

3.3.8 Pressure Gradient Term
The pressure and velocity fields are strongly coupled in fluid flows. For this and
other reasons that will become obvious to the user in the next chapter, the pressure

gradient term appearing in the momentum equations is treated differently from
other source terms.

Let us consider the pressure gradient term of the x-momentum equation. In a BFC
system, it is represented as

='3_Z?§x+ g%ﬂﬁ %Zx (67)

&

where &, 11xand {; are given by

(68)
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Equation (67) may be represented in a compact form as shown below.

oy .
§§=-a-g—k(€"-1) 69)

When ap/ dx is integrated over the control volume shown in Figure 7, it results in

the following

3 s ff e s

=AT Vp+ AB V. p+AF Vp (70)

where, Alx, A2x and A3x represent projected areas of control volume faces, e. g., Alx
is the area of n—{ face of the control volume projected normal to the x-direction.
Vep, Vap and Vip represent pressure differences which, when evaluated at the ceil
center, are given by

Vep=p,-p,
Vnp=pn-ps (71)
Vep=p,-p

where p,, ps etc. are cell-face pressures that need to be interpolated from neighboring
nodal pressures. Equation (70) may be rewritten in the following compact form

V(%)p =A%V, p 72)

Here, 8p/dx is the discrete equivalent of the continuous pressure gradient dp/ox.
Similar expressions can be obtained for dp/dy and dp/oz.

NASA/CR—2004-213199/VOL 6 32



3.4 Discretization of Mass Conservation and Mass Flux Evaluation

As mentioned before, mass conservation equation is a special one which can not be
written as the general convection-diffusion form (Equation (36)). Moreover, in a
pressure-based method mass conservation is used to determine pressure field. For
this purpose, the mass conservation equation needs special attention. The general
mass conservation equation can be transformed into BFC coordinates as

19]p 1 9 =LK _

Therefore, integration over a control volume yields

pv - pov°

Y +G,-Gy+Gy-Gs+Gy-G =0 (74)

With G, = (71-]— ) LII) for example. Note that G’s are the mass flux through a control
1 e

volume face as mentioned in Section 3.3.4.

The next task is to evaluate mass fluxes G's at control volume faces such that the
checkerboard instability is eliminated for a Colocated variable arrangement. This is
achieved by averaging momentum equation to the cell faces and relating the cell
face velocity directly to the local pressure gradient. A brief description of the
procedure is outlined below.

The discretized x-momentum equation can be expressed at a cell center P as (see
Figure 7)
ap) u
[a (At) } Zanb Upp - P(T , (—AT) u" + S (75)

where nb refers to all the neighboring cells and the transient term is explicitly

expressed to ensure that the momentum equation at cell face includes the effect of a
time step. Dividing the above equations by 4 yields
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u u
(1+cdy)u,= i—’;’ Uy - dy (g%) +cdyuf + f—g (76)
: 4
where
c= {; , dy= f’;; (77)

The above momentum equation is at P-cell but in reality it applies to every point.
Therefore, at cell face f, for example, we have

u ar‘z‘b u ap u S:
(1+cdf)uf=(§;7unb) -df(ﬁ) +Cdf u?+(3,7 (78)
P f f plf
Since we do not know how to evaluate (a%,) ¢ » for example, the following quantities

at f will be obtained by averaging the same quantity from two neighboring cell center
points.

4, (5% . (3 79)
mb p ) \%p s

Therefore, by using Equation (76) we have

a#b S: - a#b Sll: - u u (ap) u
[%Eu"”a_#]f'(%ﬁu"“ﬁ =H(1 +cdy)u, +d; b p-cdp ug (80)

where overbar means average from points P and E. A second-order accurate linear
interpolation procedure is used in SCISEAL to get the various averaged quantities at
cell face f. Equation (78) can be written as:

u u © ap u Ju ap w0
(1 +cdf)uf=(1 +cdp)up+dp (EE)P-CdP ug-dp(g;)f+cdf u$ (81)
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and the above equation is further reduced to

o u(a‘p) dp
ug=1,+d {Ep-(ﬁ)f]+cd“(u‘f’-u_‘,;) (82)
with
s
d* = P__
1-cd; (83)

Now it is clear from the above equations that the cell face velocity is obtained from
an average of the two neighboring point velocity plus a second-order pressure
correction and a second-order previous time velocity correction. The pressure term
serves as the mechanism to avoid the checkerboard problem and the previous time
velocity serves as a mechanism to obtain a time—independént steady solution.

The y-component and z-component velocities can be similarly evaluated and the
contravariant velocity component at the cell face can be thus evaluated as

U}:uf-F1x+vf-F1y+wf-Flz (84)
with
30 BN P S-S
Fo=he i;F =he ] F,=hg k (85)

and the grid metrics, Fi, efc. are evaluated at the cell face.
3.5 ressur rrection Equation

As outlined earlier, each flow variable is governed by a partial differential equation
(PDE) which is numerically solved to obtain a discrete solution for that variable.
The three momentum equations yield the three cartesian components of velocity.
Even though pressure is an important flow variable, no governing PDE for pressure
is presented. Pressure-based methods utilize the continuity equation to formulate
an equation for pressure. Two methods to achieve the velocity-pressure coupling
are available in SCISEAL:
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. SIMPLEC
. PISO
The basic framework of each method is briefly described below.

3.5.1 SIMPLEC Algorithm
SIMPLEC stands for “Semi-Implicit Method for Pressure-Linked Equations

Consistent”, and is an enhancement to the well known SIMPLE algorithm8. In
SIMPLEC, which was originally proposed by Van Doormal and Raithby?, an
equation for pressure-correction is derived from the continuity equation.

The finite-difference form of the x-momentum equation can be written as
apup={2anbunb+5u}P-AJff Vka (86)

where the subscript P refers to cell center P. The pressure field should be provided to
solve Equation (86) for u. However, the pressure field is not known a priori. If the

preceding equation is solved with a guessed pressure (or the latest available pressure
in an iterative procedure) p*, it will yield velocity u* which satisfies the following
equation. ‘

» * kx »
apup={Za,,u,+S,} p~Ap Vipp (87)

In general, u* will not satisfy continuity. The strategy is to find corrections to u* and
p* so that an improved solution can be obtained. Let u’ and p’ stand for the
corrections.

u=u"+u (88)

p=p+p (89)

An expression for “P' can be obtained by subtracting Equation (87) from (86).

. . o
apup={Zayu},- A7 Vipp (90)
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’

Because our aim is to find an incrementally better solution, we will approximate u,,,

by up giving us an expression for up

rd k 7
up=dp Vipp 91)
where
kx
dk = _A{_.
P ap-Za, (92)

We can also obtain an expression for u’,, the velocity correction at the east cell face,
by averaging from the nodal corrections

’ ’

.3
u,=- (dP +dg )Vk P, (3)
and the gradient of the pressure correction is evaluated at the cell face e.
The discretized continuity equation is

Pp Vp- P; V;
At

+Ge-Gw+Gn-Gs+Gh-Gf=O (94)
The convective fluxes G, etc. can be represented as
G=G*+G’ (95)

Where G* represent the fluxes calculated using u*, P* etc., and G’ is the correction to
the fluxes, and is to be evaluated.

Substituting in Equation (94) and rearranging, the discretized continuity equation is

pI',VP ;. P
—At—+Ge-Gw+G,,—GS+Gh-G,=Sm (96)

Where S, represents the mass correction or mass source in the control volume
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[P; V;‘ P;v Vp
Sp=—

At +Ge'Gw+G;'G;+G;'G;] 97)

By using Equation (42) in Equation (95) we get an expression for G;

(T e\ (] e
A R ] ©8)

e

In the derivation of the preceding equations, products of primes have been
neglected.

For incompressible flows p’ is zero. For compressible flows p’ is estimated as
’ a * ’
p =(£) p 99)
An equation of state is used to estimate dp/dp. If the fluid is a perfect gas

L
RT

(100)

¥y

The density correction at the east cell fac?’ p’, is estimated from PP and PE using the

u

same scheme used to estimate p,. “¢ is obtained from the cartesian velocity

corrections,

UL =u,Fj +,Fy, +w,Fy, (101)

where Fi, etc. are the grid metrics at cell face e. Equation (93) is used to obtain u;

and v; and w; are obtained similarly starting with y- and z-momentum equations
following the procedure outlined in this section.

Expressions for the contravariant velocity corrections and fluid density corrections

at all the cell faces are obtained and substituted in Equation (96) yielding an FDE for
the pressure correction
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GpPp =P+ a5 Pg+asPs + AN PN + L PL+APH+ Sm (102)
The SIMPLEC procedure can be summarized as follows:
1. Guess a pressure field p*.

2. Obtain u* v*, and w* by solving discretized momentum equations such as
Equation (87).

3. Evaluate G* from p*, u*, etc. using the procedure outlined in Section 3.4.
4. Evaluate mass source from Equation (97).
5. Obtain p’ by solving Equation (102).

6. Use p’ to correct the pressure and velocity fields using Equations (88) and (89).

7. Solve the discretized equations for other flow variables including turbulence
quantities.
8. Go to step 2 and repeat the procedure until convergence is obtained.

A variation of the procedure outlined above is employed in SCISEAL. After Step 6,
instead of executing Step 7, Steps 3, 4, 5, and 6 can be repeated a few times. That is,
only the pressure-correction equation is solved a few more times and the pressure,
velocity and density fields are updated. These intermediate iterations are called the

‘continuity or pressure-correction iterations’. They are found to enhance overall
convergence for flow of compressible fluids.

3.5.2 PISO Algorithm

PISO stands for Pressure-Implicit with Splitting of Operators. PISO employs a non-
iterative time marching method to handle the velocity-pressure coupling. It is
essentially a predictor-corrector method in which the velocity, pressure and density
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fields from the previous time level are incrementally corrected to obtain the flow
field at a new time level. PISO was developed by Issal0.

In order to explain the framework of PISO, it is convenient to recast the discretized
continuity equation in the following form

p V-pﬂ Vo
T 4(puy)=0 (103)

where A; is the finite difference equivalent of the divergence operator and subscript
“i” indicates cartesian x, y, and z directions. Equation (103) can be rewritten as

p-p p’
4 (puy)= -~ 7‘7(1'7) (104)

The discretized momentum equations are represented as

puV-pu v
T +apu;=Zau; - VAp+S; (105)

With some rearrangement of terms, the preceding equation can be written as

V aP pnuio Va
Z_t..q.; pui=zanbui,nb’VAip+SU+ At (106)

Note that both the continuity and momentum equations are numerically integrated
over the control volume with P as its center. The subscript P on p, p, ¥; and V' is
omitted for convenience.

Let us represent the dependence of pon p as

p=pfp,T) (107)

For an incompressible fluid, f = 0. For a perfect gas,

1
fle.)=xF (108)
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PISO algorithm with one predictor and two corrector steps is illustrated below. In
principle, there is no limit on the number of corrector steps.

(a) Momentum Predictor: Equation (106) is implicitly solved using the density
and pressure from the previous time step.

4 ap o * * ° pui VO
i LA =2y Ui - VAP + Syt —5 (109)

The resulting solution, u; , in general, will not satisfy continuity.

(b) First Momentum Corrector: The momentum equation is written in an
explicit corrector form as follows

V aP * e * * pau: VO
_A—t+? pu; =Zayu; - VAP +Sy+—Fp (110)

The momentum equation can be recast in delta form by subtracting Equation (109)
from (110).

a

-1
LI o * V P *
pu-p ui=-(-A—t+?) va(p'-p) (111)

However, we cannot solve for u;* because p* and consequently p* are unknown.
To find p*, we will enforce that u;"* and p* satisfy continuity. That is

. . pt- pO po V
a2 51 (112
Taking a discrete divergence of Equation (111) and utilizing Equation (112), we get
-1 * ° o o
4 aP . ° p-p P 14
4'{(227) V4}(P'P7=4-(P i)+ 52+ (1) a13)

Using the equation of state p* is evaluated as
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p=p fp.T) (114)

substituting in Equation (113)

5 v 57 o

Solution to the above yields p*, which when substituted in Equation (111) yields the
corrected velocity u;™.

()  Enthalpy Predictor: The discretized enthalpy equation formulated with p*, p*
and u;** is solved to yield h* or H*. From the known enthalpy, T* is obtained
from thermodynamic property tables.

(d) Second Momentum Corrector: The momentum equation is again
represented in an explicit form

V aP L * - poul V
Zt..:,.? p u; =Zanbui,nb'VAip +Su+ AL (116)

Recasting it in delta form by subtracting (110) from (116),

-1 * °
i Ll * * V a b » > * - e
pu -pu= (Zt_+pp) <2anb(ui,nb' ui,nb)' V4 (P -p)- ap(p p )ui}

p
(117)
Enforcing continuity, .
4 (p" u)= -%”—-%(1 ‘3) (118)
Taking the discrete divergence of (117) and using (118) and the equation of state
pi=p  fp.T) (119)

we get the following equation for pressure correction
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-1 * _ o - * °
SO L R PN SR Lok o AR SHA L)
(120)

Solving the above yields p** which can be used to evaluate p** from (119) and u***
from (117).

The quantities u***, p**, p** and T* are taken to be the flow variables at the new
time level. Steps (a) through (d) are repeated to get the flow field for subsequent
time steps.

3.6 Crank-Nicholson Algorithm

This algorithm is adopted for transient flow analysis and is formally second-order
accurate in time. Using an appropriate weighting function, the algorithm can also
be modified to give first-order accuracy in time. The second-order accuracy is
achieved by evaluating all convective and diffusive fluxes as well as source terms at

time level (n+1/2) where n in the old time level. The algorithm consists of the
following steps:

a. Evaluate all flux and source terms at last time-step i.e. at time level n.
These are stored till next time step.

b. Intermediate velocity field, u*, v* are calculated using the momentum
equations. The fluxes are calculated using the following expression

(e + fo) = afe + fof HI - aXfe + fo)"

where the superscript k denotes the iteration level. « is called the
Crank-Nicholson parameter, and controls the time-implicitness and
accuracy of the scheme. The method is second-order accurate for
a =0.5.
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C. Pressure corrections are evaluated as in the SIMPLEC algorithms, with
the mass source term evaluated as

m = am* + (1 - a)m™"
The velocities and pressures are updated as in SIMPLEC.

d. Steps b-c are repeated for a time step till a suitable convergence
criterion is satisfied. All the flow variables are updated and
calculations started for the next time step.

By changing the value of the Crank-Nicholson parameter to 1.0, the method reduces
to the Euler backward time-discretization which is 1st order accurate in time.

3.7 vin rid Algorithm

The moving grid algorithm is used to treat time-dependent flow problems with
changing/deforming grids as a result of boundary deformation. the formulation in
SCISEAL is based on an extension of the Space Conservation Law (SCL) described by
Demirdzic and Pericll for 2-D problems. When the computational grid moves in

time and space, the grid velocity, Vg, enters the flow equations and the relation
between the grid velocity and the control volume is given as

4 - )
dtJ;dV_J:Vg ds (121)

where V is the volume of control volume and S is its surface area. The continuity

and the generalized transport equations for the problem are written in integral form
as

d
a‘tfv"‘w*f,”(""’g)'d“‘) (122)
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%fqu)dV+J:p¢{V-Vg)-ds:J:q-ds+J;S¢dV (123)

where V is an arbitrary moving control volume, s is the surface of ¥ and V is the
absolute fluid velocity vector. In Equation (123), ¢ could be the velocity vector or
any other scalar quantity. g and S, are the diffusive flux and source term for the
corresponding flow quantity. The grid velocity Vg is an unknown, and the SCL is
used to evaluate it as follows.

Applying the space conservation law, Equation (121), to a moving control volume
and using parametric time discretization, one obtains

V'Vo 0 0
T:fE[GJ;Vg-ds+(1-9)J;Vg -ds] (124)

where V stands for volume of the control volume at a new time step and
superscript o stands for values at the old time step. Note that § = 1.0 is the standard
Euler backward differencing and 6 = 0.5 is the Crank-Nicolson scheme and the value
of 8 should be the same as the one used for other conservation equations for
consistency. For numerical purposes, it is convenient to define a volumetric grid
flux at a control volume (or cell) face, f, as

V= f, Vg ds (125)
and therefore, the discretized SCL can be rewritten as

v-v° . .
—— =fazce{9vf+(1 - 6) V?} (126)

If AV stands for the volume swept by the cell face f, during one time step, it yields
from the basic geometric requirement that

NASA/CR—2004-213199/VOL 6 45



V- v
A % Avy (127)

Hence, a natural way for calculating the volumetric grid flux is to let

AV,

—L=6v+1-0 (128)

or

. Av, 1) .
W:-gA—{+(1~E)\7}’ (129)

The apparent mass flux due to grid motion is obtained as

Gf=p; ¥ (130)

which when subtracted from the cell face mass flux, Gy, results in the effective mass
flux that should be used in the evaluation of convective fluxes. The evaluation of
Gf has been discussed in Section 3.4.

A close look at AVy reveals that AVy is simply the volume (but it could be positive or

negative) and the conventional method of calculating the volume of a control
volume is applicable also to AV}.

3.8 Domain Interface Treatment

The multi-domain approach involves division of the overall flow domain into
several suitable subdomains or zones such that all the grid generation in each of the
subdomains is easier. Proper exchange of information across the interfaces where
the subdomains join is crucial for the success of the solution procedure. The non-
linear flow equations require a fully implicit and conservative treatment of the
interface data exchange for an efficient and robust solution methodology. At present
the SCISEAL code interface treatment allows a one-to-one match between cells as

NASA/CR—2004-213199/VOL 6 46



well as a multi-to-one match, the only restriction being that an integer number of
cells on one side of the interface must connect to a single cell on the other side. This
is done through a special scheme in which the cell arrangement at an interface can
be represented by a standard stencil shown in Figure 9. The bigger cell is identified
as the parent (or base) cell while cells (one or many) on the other side of the
interface are identified as children (or secondary cells). Such an arrangement allows
the treatment of all domain interfaces in a standard form. For ease of illustration,
the interface treatment is explained for 2D in the following sections. Extension to
3D is fairly straightforward.

—_ = —- —e p*
92
_v_ o P, yfy epi| e
Parent Caell 5?_ - __: —p fop epg| e Child Celis
° A fz ep3| o
° If4 opy| o

Figure 9. Basic Interface Treatment Stencil

3.8.1 Interface Interpolation

In order to discretize the convection terms of the generalized convection-diffusion
equation, the flow variable ¢ needs to be interpolated at cell faces. Consider the cell
face at the domain interface of Figure 9. To evaluate the interface value at point f;

(denoted by x), for example, we need to identify a fictitious point P; . If the ¢ value
at pll is obtained, the value at f; could be easily evaluated by any of the schemes

described in Section 3.4. The p'l value could be obtained in the following three
ways:
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(@) Upwind Method: (]Jp'1 = ¢p (131)

)

: 5
5%

s Pp+ (132)

(b) Standard 2nd-Order: ¢p'1 = 5

¢P§=¢P+SP51+O(6%)

S
Sp=Sp. Minimode (1 - *)

IS——
¢p— ¢p_
. Sp-="5n
() Flux-Limited Scheme: (133)
¢P+ - ¢P
Sp. = 5

Scheme (b) is the default for all variables except convective fluxes; the scheme for
convective fluxes depends on the selection by user.

3.8.2 -Diffusi n

Cross diffusion terms are important when severely skewed BFC grids are used.
They can be the dominant terms in flows with little or no convection as in heat
conduction problems. In SCISEAL, the cross diffusion terms at the domain

interfaces are treated implicitly to ensure accuracy. This treatment is illustrated for
one term below

10 PN
o=} % (%) (134

Integration of this term for the child cells p1, p2, p3 and pq is essentially the same as
that for a single-domain grid. The values of ¢ at the child cell corners are evaluated
from the surrounding nodal values, both physical and fictitious. For instance, ¢4,
the value of ¢ at the northwest corner of cell py, is estimated as
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By=5 (054 05+ 05 +65) (135)

Integration of Equation (134) for the parent cell P requires special attention.

f J j D Yy dednde= (Jrg”%%)e-(ng“%%) (136)

w

The second term on the right hand side of the preceding equation, i.e., the west face

term is evaluated as explained in Section 3.3.5. The first term on the right hand side
is evaluated at each of the 4 segments that form the east face of cell P.

(]F & ;;)e i’ (IF a ;;)f.- (137)

i=1

For example, for the segment f;, which is the interface between cell P and cell Py,

(I Zlﬁ) =(1r5"); (64— ) (138)

¢4 and ¢p are evaluated using relations such as Equation (135).

3.9 Conjugate Heat Transfer Analysis

In a number of seal and turbine secondary flow path problems the flow domain will
contain internal solid objects, e.g. cavity wall, labyrinth seal teeth etc. Thermal
energy transport can occur across the solid-fluid interfaces and through the solid
objects. The energy equation solutions must consider convection-conduction in
fluids, conduction in solids and the fluid-solid interface transfer. Such a procedure
is called conjugate heat transfer (CHT) analysis.

3.9.1 Interface Constraints

For thermal energy conservation, the following criteria have to be met at a solid-
fluid interface (see Figure 10):
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) Heat flux at the interface must be equal both on solid and fluid sides;
and
. Temperature has to be continuous across the interface.

These two conditions can be mathematically represented as

K, (V1) 1= K (VT)y (139)

Ti = Tsi = Tﬁ (140) )

where the subscripts s and f stand for solid and fluid respectively, and the subscript i
indicates the interface. Differences in the solid and fluid properties imply that
quantities such as enthalpy will not be continuous across the interface.

=1

b 421073 14-5

Figure 10. Interfacial Conditions for Conjugate Heat Transfer

3.9.2 Equivalent Thermal Conductivity

An equivalent thermal conductivity can be calculated using the interfacial balance
equation. Equation (139) can be rewritten as
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szs'n=Kfo‘n=KeVT'n (141)

where k. is the equivalent thermal conductivity. In tensor notation, VT . p 18

expressed as

ar & g & I &
VT-"=( ‘ ° ) (142)

— +—— +———— -
aé 81-81 9772282 aCeS'es "

where e;, e, and e3 are the covariant base vectors in &, 7, and { directions, while e, '
e2, and e3 are the contravariant base vectors.

By assuming

aT, T,-T, aT, T;-T, 3T, Ty-Ty

SE=TAE 'am am, ‘o AL

in the solid phase, and

3 ~TAEL ‘T 4 o = TAL

in the liquid phase, the temperature at the interface T; can be obtained and
expressed as follows

_ AT+ BT, +(D-C) +(F-E)

Ti - A+B (143)

where
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cal v 7

K (T;-T 2, T &% -
Cco (T 12)(82 n) D= ﬂ iz( )
f

an e ey
E = Kf(Tis - Ti4) e n F= Tﬁ T14 &
- An 3 Al 3

Note that T;1, Ti2, Tis and T4 are the interfacial temperatures at the corners. By

substituting Equation (142) into Equation (141), the equivalent thermal conductivity
K, is obtained after some manipulation.

AB(T,-T;+A(D +F)+B(C +E))
Ke=—"@a= BYG (T, -Ty+H+1I)] (144)

where

T;-T; Ts-Ty (e
G=1(1)’H=1Qe2 gy 5T (e om
Ags + Aif €;-n an ez -e3 A¢ eg -e5f

3.9.3 Turbulent Flow Consideration

When turbulent flow with wall functions is being treated, the fluid conductivity k¢
needs to be modified to include the effects of turbulence. This is done by
considering the expression for wall heat flux in turbulent flows

pf Cpf u,- (Tf' TI)

4,=-KVI-n, = = ' (145)

Here, T* is evaluated from the thermal law of the wall, and the friction velocity,

T/

is

1
=
u,— —E
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An effective fluid conductivity IZf is next defined as

PCyu(Te-Ty)
T(+f ')=Kf‘7T‘"w (147)

to yield the expression for sz

o _PLpte 0

f T (148)

where § is the normal distance between the wall and the first cell.

K f is used in place of K in all the equations presented in Section 3.9.

3.10 Turbulence Model

A number of turbulence models have been incorporated in the SCISEAL code for
the computations of the turbulent flows that exist in the seal flows. The theoretical
framework behind turbulence modeling is outlined in this section, followed by a
description of the various models that are available. The choice of the particular
model that should be used in computations often will depend on factors such as the
type of the flow, constraints on grid sizes, and flow details and any particular
physical characteristics.

3.10.1 Eddy Viscosi
Favre averaging, the basis for all the turbulence models in SCISEAL, has already

been described in Section 3.2.4. We have also seen how Favre averaging introduces
additional terms known as Reynolds stresses in the Favre-Averaged Navier-Stokes
(FANS) equations and how these stresses are modeled using the Boussinesq eddy
viscosity concept (see Equations 27 and 28). Following the kinetic theory of gases,
the eddy viscosity is generally modeled as the product of a velocity scale 4 and a
length scale ¢
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w=Cpql (149)

where C is a constant of proportionality. Various models differ in the way 4 and ¢
are estimated and each of the following sections describes a turbulence model. In

the description of models, the overbar for u and p, and tilde for u, v, etc. will be
dropped for convenience.

3.10.2 Baldwin-Lomax Model
This belongs to the class of algebraic turbulence models because the velocity and
length scales are obtained from algebraic relations. It is also commonly referred to as

a mixing-length model because it employs Prandtl's mixing-length hypothesis in
modeling length and velocity scales.

Baldwin and Lomax!? developed this model primarily for wall-bounded flows. Like

the mixing-length model of Cebeci and Smith®, it employs different expressions for
Y, in the inner and outer parts of the boundary layer.

= 150
He Kt outer fO?‘ Yy 2 Yerossover ( )

_ {ut inner for ys ycrossover}
In the inner layer, Prandtl's mixing-length model and the Van Driest's damping
function are used to estimate the length scale

P=xy[l-exp(-y* /A" (151)

where A* is the Van Driest's damping constant. y*, the distance from the wall in
wall units, is defined as

yr=yuL /v, U=y Ty/p (152)

In the preceding expression u_ is commonly known as the friction velocity with T,
being the shear stress at the wall.
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The velocity scale g is modeled as the product of ¢ and the root mean square
vorticity

{32 B 2T
Using the preceding expressions, the eddy viscosity in the inner layer is obtained as
K inner = P €2 | @] (154)
The outer layer eddy viscosity is determined from the following expressiqn
Mt outer = K Cep P Fryake Frieb (v) (155)

where K is the Clauser constant, C o is an additional constant, and

. Uy
Foyake = min yrmemax'kaymaxm (156)

The quantities y,,, and F, ., are determined from the function

Fy)=ylo|[1-exp(-y*/A™)] (157)

The quantity F,,, is the maximum value of F(y) that occurs within the boundary
layer and y,,,, is the value of y at which the maximum occurs.

Fi(y) is the Klebanoff intermittency factor given by

-1
Fagep () =[1 +55 (Sﬂﬁﬁ‘-y-ﬂ (158)

Ymax

The quantity Uy is the difference between the maximum and minimum total
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velocity in the boundary layer (i.e., at a fixed x station)

Ugy = V(2 + 0% + ),y - V@ + 0% +w?),,, (159)
The second term in U, is zero for stationary walls.

The values used for the constants appearing in the preceding expressions are

A*=26 C,=16 Cg,=03 C, =025 k=04 K=0.0168

3.10.3 Standard k-€ Model

Several versions of k-e models are in use today, but the model employed in the seals
code is based on Launder and Spalding!3. This model employs two partial
differential equations to estimate the velocity and length scales and hence
commonly known as the two-equation model. These equations are the k- and &-
equations which govern the transport of the turbulent kinetic energy (TKE) and its
dissipation rate respectively. The modeled equations are

%(pk)"’i(pu,k):pp-ps+i[u+ut i]

axl ax] Ok ax]
9 ) _~ PPe per . 3 [H+Hs e
ﬁ(P e)‘+gj(p u;g)=Cg - -C,, . +a—xj[———as ta_x]] (160)

with the production P defined as

ou; du] 7 ou, .\ou; 2, du,
P= Vt(ax = 3% u)sx‘, 3k, (161)

The square root of k is taken to be the velocity scale while the length scale is
obtained from
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3/4 1 3/2
_GHE

f= —— (162)
The expression for eddy viscosity is
C K
V= —— (163)

The five constants used in the model are
C,=009; Cp=144; C, =192, 6,=10; 0,=13
The model uses wall functions to compute the turbulence quantities as well as the

turbulent viscosity of the fluid at the computational points next to the walls. The

wall functions described by Launder and Spalding!?, are derived from experimental
and analytical knowledge of the one-dimensional Couette flow which exists near
the wall. A semi-empirical universal function of non-dimensional distance normal
to the wall, y*, is

yt= p;‘-yp'—ﬁ (164)

In the above definition, dy is the distance normal to the wall and u, is the “friction

velocity” given by
Tw 12
u, =(2) (165)

In the internal sublayer (y* > 11.63) the velocity variation may be described by a
logarithmic relationship i.e.

u =% In (Ey) (166)

where E = 9.70 and « = 0.4034 are experimentally determined constants.

NASA/CR—2004-213199/VOL 6 57



In both the viscous (y* <11.63) and internal (y* > 11.63) sublayers, the shear stress is
calculated from the product of effective viscosity 4,4 and normal velocity gradient

duldy, i.e.

— du
T = Heff Gy (167)

where

{u for y* <11.63
ueff=

Hyypp for y* > 11.63 (168)

Near the wall, the transport equation for the turbulent kinetic energy, k, reduces to a
balance between the local production and dissipation of k to give

My (———)Z = pE (169)

The velocity gradient may be replaced.from Equation (168) and the dissipation rate
from

K

he=Cuipg (170)
to give
Ty = C&/Z pk=pul (171)
Hence, it follows from Equation (165)
% in(Ey?)
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Evaluation of the heat flux at the wall in the enthalpy equation is also done by

assuming a profile for temperature near the wall. For laminar flows, the wall heat
flux is obtained from finite differences because linear variation of temperature is a
good approximation close to the wall.

q,=K (173)

S
I
=

<~

For turbulent flows, Reynolds analogy is assumed, i.e. the velocity and temperature |

profiles are assumed to be similar when plotted in wall coordinates. The wall heat
flux is obtained from the following expression

2 2
. c,(r-T)+Lto (v -V))

174
o (174)

V and V, are the total velocities at the first grid-point and the wall respectively. T*

at the first grid-point is obtained from a thermal law of the wall given below.

T =ou” fory* Sy; (175)

=0, (u+ P+) fory* > y;: (176)

In the preceding relations, P* is a parameter which is dependent on the fluid Prandtl
numbers while yT+ is the value of y* at which both the expressions (175) and (176)

yield the same value of T.
. 14
P’ = q(-‘l - )(F‘) (177)

If 6 = 0.7 and 6, = 0.9 we get P* =-2.13 and y; =9.585.
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3.10.4 Multiple-Scale Model

Most turbulence models, including the standard k-e model, assume one time scale
for both the production and the dissipation rates of turbulence. However, experi-
ments and the Direct Numerical Simulation (DNS) of turbulence have shown that
most of the turbulence production occurs at large scales (energy carrying eddies) and
is cascaded to smaller scales (dissipative eddies) where most of the dissipation takes
place. Several authors (e.g., Hanjalic et al.,'4; Fabris et al.,'%) have suggested
partitioning of the energy spectrum into production range kp and dissipation range

k,, the sum of the two quantities being k. Kim and Chen!é have developed a

multiple time-scale turbulence model based on variable partitioning of turbulent
kinetic energy. The partitioning is determined as a part of the solution and depends
on local turbulence intensity, production, energy transfer and dissipation rate. The
partition is moved into higher wave numbers when production is high, and to low
wave numbers when production vanishes. The model uses a transport equation for
each kp, k;, €, and g, however these equations differ from each other only in the
source terms.

ok
d d - 0 |H+H “%p
a(pkp)"‘a‘g("“ikp)—PP'Pep’fa—xj( akpt—g)
] 2 —pe. - 0 (m+m ok
at(pkt)”*axj(p”ikf)“’ar pe‘+ax]-( Ok x]-)
312D (oyetec PPLL o PP o PE 5 (n+y 98
3 (psp)+ax]_ (Pu£p) = Cep, kp +Cyp, kp - Cep, kp +axi GE, oz
J 3 _~ peP? PPep&  pe} 3 (m+i, de
SE 02+ 3 (U] =Co T+ T o 3 bt am

The eddy viscosity is defined as
vt = Cu kZ/Ep (179)

where k, the total TKE, is calculated as
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k= kp +k, (180)
The model constants are
C, =0.09; 6, =0 =075 0g =0y = 115
Coyr =021 Cepz = 1.24; Cp3=1.84; Coy =029; Cy, =1.28; Cy3=1.66

3.10.5 Low Reynolds Number Model

All three models described above, viz. the Standard k-e model, the extended k-€
model, and the multiple time scale model, are of high-Reynolds number form and
therefore require the used of wall functions. However, the commonly used wall
functions may not be accurate in flows with large separation, suction, blowing, heat
transfer, relaminarization, etc. This difficulty associated with wall functions can be
reduced by the use of low-Reynolds number k-¢ models which permit integration of
momentum and k-e equations all the way to the wall. The k-e equations are
modified as shown below to include the effect of molecular viscosity in the near
wall regions.

%(pk)+£—_(pujk)=£c—l kaaak]]w(p - D)

+ Pe
s Pe)+=—(pu;e =%[u6?t gf]*chfl pk Cezfz
(181)

Several versions low-Reynolds number k-e models are available today. After a
careful analysis of the comparative studies done by Patel et al.l?, Brankovic and

Stowers!8, Avva et al!9, the low-Re model of Chien?® was selected for
implementation in the seals code. The model parameters appearing in the
preceding equations are:

C,=009; C,,=135; C;,=18;0,=10; 0,=13

fi=1-exp(0.0115y*), =10, f=1-022exp [{R/6)?]

D= ZVk/y2 ;E=-2 V(S/yz) exp (-0.5 y*) (182)
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3.10.6 2-Layer Model

The usual choice of turbulence models: the high- and low-Reynolds number models
can be applied depending on the flow conditions and the grid sizes available. The
model applicability depends on the distance of the first computational node from
the wall. For the High-Re model, this distance, expressed in terms of the nondimen-
sional distance y+, must be greater than 11.5 for the model to be accurate. On the
other hand, the low-Re model required that the near-wall point be in the laminar
sub-layer, at y+ of below 1. Computationally the high-Re model is robust and is the
preferred choice. The low-Re model, under some circumstances becomes extremely
stiff, and is harder to use.

In seal flows, the narrow clearances typically can generate very low near-wall
distances, even for relatively coarse grids. In such cases, when y+ falls below 11.5,
the more robust standard k-€ loses accuracy, and tends to overpredict the wall-shear.
Use of the low-Re model in these cases will be more appropriate, however, the
solutions are grid sensitive, and computationally stiff. In some cases, such as flows
in labyrinth and grooved seals, there are regions where the flow is fast (e.g. laby seal
tip gap), while in some regions it is quite slow (laby cavity). In a flow of this type,
even a coarse grid will generate very low y+ values in the cavity region, while the
tip-gap region has relatively high near-wall y+ distances. In such a case, neither of
the above models can be applied either due to loss of accuracy (high-Re model), or
prohibitively large grid sizes (low-Re models). To treat such type of problems, a 2-
layer model of wall treatment has been incorporated. The model provides the

accuracy of the low-Re model for very low y+, and smoothly blends to a high-Re
solution at higher y+ values.

In the outer layer, the standard k-e equations govern the transport or turbulence and
the eddy viscosity is computed as

Re=Cu— (183)

In the inner layer where the molecular viscosity is either dominant or comparable
to eddy viscosity, Equation (183) is replaced by
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Me=CuVk I (184)
The viscosity length scale ], is determined using a Van Driest type correlation
L=Cry[1-exp (-2 (185)

Re is a local Reynolds number based on TKE

Re= Ev—-y— (186)

For conformity with the log law, C, is taken as

C =5 (187)

where x is the von Karman constant.

In the inner layer, the e-equation is replaced by an algebraic length scale equation

/2
€= El— (188)
€
where the dissipation length scale 1 is modeled as
__Cy
le= T+ b/Re (189)

Rodi?! recommends the following values for constants a and b appearing in
Equations (185) and (189):

a=50.5 b=53
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To be consistent with the standard wall functions, x in Equation (187) is taken to be
0.433. Note that a value of 0.40334 is used for x appearing the log law u* = 1/x (Ey*).

Equation (184) may be recast by using Equation (188)

CuVEL,=C L, Yk e
=cp1pi’e_’£%=c T“--"; c.rk (190)

Equation (190) resembles the typical formulation employed by most low-Re models.
f, is the ratio of viscosity length scale to dissipation length scale. Two-layer model is

based on the premise that the viscosity length scale is smaller than the dissipation
length scale inside the inner layer, but equal in the outer layer.

1 (exp Re)
! Ry
f,= T& =
) (1 + 5.3/Re) (190

Note that f, is strictly a function of Re only. The location where f, becomes unity is

used in the present formulation as a matching criterion.

Numerator Denominator

Re | of Eq.(2.116) | of Eq. (2.116) fu

1 0.0196 0.1587 0.12348
10 0.1796 0.6536 0.275
100 0.862 0.9497 0.9076
180 0.97168 0.9714 1.0003
200 0.981 0.9742 1.007
1000 | 0.9999997 0.99473 1.0053
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3.11 Solution Methods

SCISEAL uses a pressure-based, iterative segregated solution procedure. The
equations for the flow variables are solved in a sequential manner, and respectedly

till a convergent solution is obtained. The overall solution method for SIMPLEC
and PISO algorithm is presented in this section.

3.11.1 SIMPLEC Algorithm
The overall solution procedure for the SIMPLEC algorithm is shown in Figure 11. -
Note that all the parameters that dictate how many times a procedure is repeated
can be specified by the user. These are the number of iterations (NITER), the
number oc continuity iterations (C_ITER) and, in the case of transient simulation,
the number of time steps (NTSTEP). The procedure for a steady-state simulation is
simply repeated at each time step of a transient simulation. The number of
iterations to be performed is dictated by the overall residual reduction obtained. At
each iteration the program will calculate a residual for each variable which is the
sum of the absolute value of the residual for that variable at teach control cell. The
residuals are not normalized, and hence the convergence criterion should be based
on the reduction of residuals rather than on the absolute values. A drop of 4-5
orders of magnitude is usually sufficient to consider the solution as converged.
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At t=tg
Prescribe Initiai Flow Field

r

t=t+ At

Y

Evaluate Link Coefficients

'

Solve u, v, w

Repeat C_ITER
times

)

A

W

Evaluate Mass Imbalances

%

Solve p'

!

Correctp, u, v, w

Repeat NITER
times

Solve h

!

Solve other scalars

CR

epeat NTSTEP
times

)

Figure 11. Solution Flowchart for SIMPLEC Algorithm
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3.11.2 PISO Algorithm

The overall solution procedure for the PISO algorithm is shown in Figure 12.
Although PISO is an inherently transient procedure, it can be applied to steady state
problems. In this case, the number of iterations (NITER) is comparable to the
number of time steps performed in a transient simulation. The time increment
through which the solution is allowed to advance at each time step is controlled by
the under-relaxation factor applied and the time-asymptotic solution is sought.

Att=tg
Prescribe Initial Flow Field

r

t=t+ At

"

Solve momentum predictor

!

Solve momentum corrector;

( Repeat NITER ) Repeat NTSTEP
times Solve k, & times

Solve enthalpy predictor

!

Solve compositions

!

Solve momentum corrector

!

YES NO
Steady?

Figure 12. Solution Flowchart for PISO Algorithm
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3.11.3 Under-Relax

Under-relaxation of dependent and auxiliary variables is used to constrain the
change in the variable from iteration to iteration in order to prevent divergence of
the solution procedure. For all dependent variable except the pressure correction,
this is done by modifying Equation (66) in the following way

ap(1+1)Pp= T,y 6,5+ Sy + 4,1 05 (192)

Where ¢*P is the last iteration value. At convergence, d)*P and ¢p are same and

effect of I disapperars. During the iterative procedure, the factor I increases the |
diagonal term associated with ¢P and in effect reduces the corrections made in ¢*P to

get ¢, A larger value of I thus implies a higher relaxation.

If we express I in the form of a transient term link coefficient

pVv
I= (193)
Atf ap

Then 4% can be viewed as a pseudo time step. In SCISEAL the value of I is specified
directly and values between 0.2 and 0.8 are common. Higher relaxation may be
needed for difficult problems.

The auxiliary variables p, P, T and v can be under-relaxed by specifying a linear
under-relaxation factor, «, which is applied in the following way

" = af +(1- a)e* (194)

where 67¢% is the updated value of the auxiliary variable, 6 is the value of that

auxiliary variable that would be calculated with no under-relaxation and 6 is the
current iteration value of the auxiliary variable.

3.11.4 Linear Equation Solvers

The discretized flow equation for each grid cell are interlinked with neighboring
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cells, and when assembled generate a set of coupled linear equations. These can be
written in the matrix form as

[Alo=S

Due to the nature of the structured grid, the matrix A is sparse and has a diagonal
banded structure. The individual non-zero elements of A are the link coefficients
associated with each flow cell. The matrix A has to be inverted to get the solution
vector ¢. This can be done in SCISEAL using two types of linear equation solvers.

3.11.4.1 Whole Field Solver Whole field solvers are based on the strongly implicit
procedure (SIP). The method involves modification of the original linear equation
set as

[A+Blp =S+[Bl¢ (195)

The matrix B is such that A + B is easily factored into upper and lower triangular
matrices L and U. Further more, L and U matrices together have the same number
of non-zero diagonals as the original matrix A. The modified equation then
becomes.

[L] [Ul¢ =S +[B]¢ (196)
This can also be expressed as
[L]V =S+[B]¢ (197)
where
vV =[Ule (198)

An iterative procedure can then defined and used
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Evaluate V**1 from [L]Vk” =S+ [B]‘Pk
Evaluate ¢ kel from [Ul¢ kal_yk+1

The whole-field solvers in SCISEAL use this procedure. The form of L and U is
such that points along lines in one of the coordinate direction are linked implicitly

through tri-diagonal arrays. There are, therefore, three of the solvers named the
WHOLE-X, WHOLE-Y and WHOLE-Z solvers.

3.11.4.2 Conjugate Gradient Squared Solver Conjugate gradient type solvers have
many advantages over classic iterative methods such as suitability for vectorization |
and the lack of user-specified parameters. The CGS algorithm has been incorporated
into the SCISEAL program. The CGS algorithm applied to the system A¢ =S is
expressed as follows

Initialization (n=0) r, =S5 - A¢,

q0=p-1=0; p_1=1

p
Iteration (n 20)  py=r, 1 By=—
Pn

Up=Ty+ By iy
pn=un+ﬁn(qn+ﬁnpn-l)
v, =Ap,

T
Op =Ty U On="35"
n
Ins1=Upn = Oy Uy
Tue1 =T = %A (un + qn+1)

$r+1= +an(un+qn+1)

The convergence rate of conjugate gradient algorithms depends on the spectral
radius of the coefficient matrix and can be effectively accelerated by preconditioning
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the system. This preconditioning is accomplished by transforming the system

Ao= p'I Ag= p'l §. Incomplete Cholesky decomposition is used as a preconditioner
in SCISEAL.

312 Rotord ic Coefficient Calculati

As a rotor rotates in a fluid seal, the fluid forces developed in the seal play an
important part in the overall stability of the rotating machinery. The forces
developed in a seal can be large enough to destabilize a rotor, or stabilize an
otherwise unstable system. The seal force characteristics also play an important part
in determining the critical frequendies of a rotating system.

The seal flow forces generated when a rotor moves in the seal are related to the

rotor center displacement, velocity and accelerations (Figure 13) through the
following relation

F
y

F

z

K K
y ¥

K _K
zy 22

cC C
w oy
- C
zy 2z

BRI Rl

where Fy and F, are the fluid reaction forces as a result of rotor center motion,
KW,KZ,_ the direct stiffness coefficients, K

yz’
ny,sz the direct damping coefficients, C
coefficients, M

K,, the cross-coupled stiffness coefficients,

yzrCay the cross-coupled damping

M_, the direct inertia (mass) coefficients, and M sz the cross-

¥y ¥z’
coupled inertia coefficients. These coefficients relate the reaction forces to the rotor
center displacents, velocities and accelerations y,z, ¥ 2, #, 2. The values and signs of
these coefficients determine the effect of the fluid flow in the seal on the dynamic

characteristics of the supported rotor system.
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Figure 13. Rotor Displacement, Velocity and Acceleration and Fluid Reaction
Forces in a Generic Seal Configuration

At present there are two different methods available in the SCISEAL code to
evaluate these coefficients. These are:

a. whirling rotor method; and
b. small-perturbation method.

The whirling rotor method is based on computations that involve the full CFD
solution of the seal flow. The perturbation method is based on computations of the
perturbed fluid flow under a prescribed, small rotor motion. A description of these
methods follow.

3.12.1 Whirling Rotor Meth

In this method, the seal rotor is assumed to undergo a whirl such that the rotor
center describes a circle about the stator center (Figure 14). Such a problem is time-
dependent, but the circular rotor whirl orbit allows a coordinate-frame
transformation that renders the problem quasi-steady. This is done by using a
reference frame that has the origin at the stator center and is rotating with the rotor
at its whirl speed. In this frame, rotor appears stationary, and a steady-state analysis
is possible with the inclusion of appropriate body forces in the momentum
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equations. A description of this transformation is given after the treatment for the
perturbation method, as well as in Reference 45.

-y

Figure 14. Seal Configuration for the Circular Whirl Orbit Method for
Rotordynamics

Since the rotor whirls around the stator center, the system can generate only a skew-
symmetric set of rotordynamic coefficients described as

JHEEHERERI R AH

where K,k now are the direct and cross-coupled stiffness coefficients, C,c are the
direct and cross-coupled damping coefficients, and M,m are the direct and cross-
coupled inertia coefficients. These are assumed to be independent of the whirl fre-
quency Q . Next, we use the definitions of the displacement of the rotor center

y =rc0s (Q1)

z =r,5in (Qt) (201)

to calculate the rotor center velocities and accelerations, with 1, as the radius of the

whirl orbit. These are then used in Equation (200) to yield relations between
reaction forces and various rotordynamic coefficients
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F
- A=K+ cQ-MQ?
[¢]

F (202)
—7§=—k+CQ+mQZ

[

The calculation procedure then involves computations of the CFD solutions in the
seal with whirling rotor at several different whirl frequencies (at least 3). The
pressure fields on the rotor surface are integrated at each whirl frequency to provide
F, and F, as functions of the whirl frequency. An appropriate curve-fit is used on

the force vs. whirl frequency curves to yield the rotordynamic coefficients.

As mentioned earlier, this method is applicable to the centered rotor position.
When the rotor whirls about a non-centered position, even the use of a rotating
frame of reference cannot make the problem quasi-steady. For this reason, the skew-
symmetric dynamic coefficient set can be calculated using this method.

3.12.2 Small Perturbation Method

This method is based on the solutions of perturbations in the seal flow field under a
prescribed small motion of the rotor center about a given nominal position (similar
to the method described by Nordmann and Dietzen?2). The perturbation variables
can be solved using a quasi-steady solution method to yield the fluid reaction forces.

The method is sufficiently general to include statically eccentric and/or misaligned
seals.

In this method, the rotor of the seal is assumed to undergo a circular whirl around a
given nominal position, with a very small orbit radius r,, given by

ro=eC, (203)

where C, is a reference length, e.g. the nominal seal clearance, and e is a small

number. In the nominal position, the rotor can be centered, eccentric and/or

misaligned. A time-dependent flow field exists in the seal as a result of the rotor
motion, and the flow variables are assumed to have the form, e.g.,
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U=1u,+eu;

A (204)

where u_, v, correspond to the steady-state seal flow solutions with the rotor in the
nominal position (0th order), and u,, i are the time-dependent perturbation

solutions (1st order). Using these definitions in the Navier-Stokes equations,
ignoring terms with ¢? and higher terms, and separating out the Oth and 1st order
terms, the governing equations for the two sets of variables are generated. Since the
rotor center motion is a combination of sine and cosine functions of time, the 1st
order flow variables are also assumed to have the form, e.g.,

uq = Uy, cos (Qt) + uy, sin ()

vy = Uy, cos (Qt) + vy, sin (Qt) (205)

where u;,, #,, etc. are functions of space only. Similar definitions for all flow

variables are assumed and substituted in the 1st order flow equations. By separating
out the terms containing sin(£t) and cos(£2t) in each of the equations, two equations
for each of the 1st order flow quantity can be obtained (i.e. one equation each for
quantities like u,_, u;, and so on). '

The next step involves regrouping and redefining new 1st order variables such as:

121 =Uq +1 Uis
Dy =ug +iv (206)

where i =¥=1 . The equations for these complex quantities are generated in a similar
fashion:

(Equation for i1,) = (Equation for uy.) + i (Equation for uy) (207)

The resulting equations have a form very similar to the Oth order equations. Thus,

the momentum equation for ; has the form:
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(208)

where S,; contains the complex source terms that arise due to the complex
convective and diffusive fluxes as well as the grid transformations. The continuity
and energy equations are transformed in a similar fashion, and both contain
additional complex source terms. Several points to note here are: a) The
momentum equations are linear, since the convective terms contain the Oth order
fluxes which are constant; 2) the equations are similar in form to the base Oth order
equations, so that a similar solution procedure can be used and 3) the 1st order
variables are complex quantities, so that complex algebra is required for their solu-
tions.

The perturbations are assumed to be small enough so that the turbulence quantities:
k, € and the turbulent viscosities are assumed unchanged in the 1st order equations.
This reduces the 1st order set to only the momentum, continuity and energy equa-
tions (for compressible flows) only.

The overall solution procedure is:

a. calculation of the steady-state, Oth order solutions of the Navier-Stokes
equations for the seal flow with the rotor in the nominal position;

b. solution of the 1st order equations using the Oth order convective
fluxes and turbulent quantities; and

c use the resulting pressure field to calculate the rotordynamic
coefficients.

Once the 1st order pressure field is known, it is integrated over the surface of the
rotor and the resulting time dependent forces are decomposed into Y and Z

components to yield F,, F ;, F,,, and F; as given below:

=1 A
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1 "
F,= -(—:-;J; Pis fi,( rd8dx)

(209b)
F,,= EIZJ; J; P1s- ﬁz (rdedx) (209¢)
F, = —1-; J; J; 1.+ iArd0dx) (209d)

where 7, and 7i; are the components of the local surface normals in the y and z

Cartesian directions. Using the definition of the displacement of the rotor center

y =r,cos (Qt)
z =r,sin () (210)

the rotor center velocity and accelerations are calculated. These are then substituted
together with the definitions in Equations (209) in the basic force-displacement
relation, Equation (199). Collecting terms with cos(£2t) and sin(2t), four equations
linking the integrated reaction forces and the whirl speed Q are generated, as given
below:

-X _ _ 2

—Fpp = Ky — G, Q2 Mnyz

~Fyi = Kyp = Gy Q2 = M, 0

~F,p =Ky + CpQ - M, Q7

—F;i=Ky + CzyQ - AdzzQZ 211)
As in the whirling rotor method, the solutions of the 1st order quantities are

generated at several different whirl frequencies Q, and appropriate curves are fitted

to the F, F,;etc. vs. frequency curves to yield all the rotordynamic coefficient.

As stated earlier, this method generated the full, non-symmetric set of coefficients,
and can be extended to generate the coefficients due to angular displacements. The
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overall solution procedure requires the solutions of several quasi-steady problems,
and hence is computationally fast.

3.12.3 Grid Transformation for Concentric Whirling Rotor

When a rotor whirls inside a seal, the moving surface of the rotor generates a
deforming grid which produces a time-dependent flow. This flow can be solved
using the moving grid method described earlier. This problem is time-dependent
and hence computationally expensive. In a special case of rotor whirl, however, it is
possible to change the frame of reference and render the problem quasi-steady. This -
special case refers to the rotor whirl which has a drcular orbit and stator center as
the orbit center. This transformation is the basis of the whirling rotor method and
following is a brief description of the transformation and the resulting flow
problem.

The whirling rotor is shown in Figure 15. The spin speed is @, rad/s and the whirl
speed is Q_rad/s. The figure shows the rotor when its center is in orbit at one time
instant. The orbit radius is € and r, is the radius vector of a typical point on the rotor
surface with respect to the rotor center.

To render this problem quasi-steady, one must switch the reference frame such that
in the transformed frame, the flow domain appears non-deforming even when it
deforms in the absolute reference frame. When a rotor is whirling in a circular
orbit, this transformed frame corresponds to a frame that is rotating at rotor whirl
speed, has the stator center as the origin, and stator axis as the axis of rotation.

To understand this transformation, refer to Figure 16. In this figure the positions of
the rotor center at two different time instances are shown. Also shown are two local
reference frames such that the local Y’ axis always joins the stator center and the
minimum clearance point. In the local Y’ — Z’ frame the flow domain now appears
unchanged, and hence Y’ — Z’ is the reference frame we need. Since the minimum
clearance point moves at whirl speed Q,, so does the Y’ — Z’ plane.
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N

Figure 15. Schematic of a Spinning Rotor Whirling in a Circular Orbit about the
Statc- 7 anter

Figure 16.  Positions of the Whirling Rotor at Two Time Instants. Also Shown are
the ‘Local’ Reference Frames y’ - z’ at these Two Instances.
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The changes in the flow equations as a result of this rotating frame transformation
involve addition of the centrifugal and Coriolis accelerations to the momentum
equations. The wall boundary conditions also need to be transformed. This needs
care and the procedure is outlined below. Referring to Figure 17, the absolute wall
velocities are:

stator V=0 12)

and

rotor V =0 x# +Q x& (213)
ra p r ;4

where 7 ,  etc. refer to the position vectors of surface points. For the rotor surface

the total velocity is a combination of the rotor spin and whirl speeds.
Transformation to the rotating frame involves subtraction of a velocity of the type

V,=8 xR 214)
from all wall velocities, where R refers to the radius vector with respect to the stator

center as shown in Figure 17. With this transformation the surface velocities
relative to the transformed frame become:

Stator: V =V -Q xR =-Q xR (215)
rr 5.a X N X N
Rotor: V =V -3 xR =6 x?+0 x2-0_xR (216)
r,r r.a X r X r X X r
Noting that R°r =7 +8 (217)
we get the rotor velocity as v, = (@ -8 )x7 (218)

Note that in the transformed frame, the stator wall appears to move backwards. The
rotor wall, which describes a whirl in the absolute frame, has been reduced to a
spinning wall such that the modified spin speed is the difference between the rotor
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spin and whirl speeds. This corroborates our assertion that in the rotating frame the
grid deformations are removed and the problems can be treated as quasi-steady.

Figure 17. Definitions of the Rotor Spin and Whirl Velocities as well as Radius
Vectors for Wall Velocity Transformation. Note that all Definitions
are in the absolute Reference Frame.

Interpretation of the results obtained using this frame must be done with care.
With the transformation the eccentric rotor looks similar to a bearing, and there is a
tendency to explain the flow in terms of the rotor and stator wall absolute velodities.
This procedure will lead to unphysical interpretations. The proper way to analyze
this flow is either to treat it as a time-dependent flow (absolute reference frame) or
use the transformed plane, with proper transformations to the wall velocities,
where the stator wall has a motion.
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4.0 SAMPLE AND VALIDATION PROBLEMS

A large number of flow problems have been simulated with SCISEAL and the
results compared with benchmark analytical/experimental /numerical date to assess
and validate the accuracy of the numerical and physical models incorporated in the
code. A partial list of the problems is given below. Following the list, descriptions
of several relevant problems and selected results are given. The first several
problems in the list are checkout type 2D problems and hence details are omitted.
All seal-related and other relevant problems are described.

41  Problem Titles
1. Fully-developed flow in a pipe and channel.

Developing laminar flow in a narrow annulus between two cylinders. Slug
flow at inlet, fully-developed flow at outlet.

3. Laminar flow between rotating cylinders. Below critical Taylor number,
tangential flow only.
4. Flow between two cylinders, rotating inner cylinder. Taylor vortex flow,

Laminar and turbulent?3.
5. 2-D driven cavity flow, Reynolds number up to 10,000. Comparisons with
numerical results by Ghia et.al.?4.

6. Couette flow under different pressure gradients. With and without heat
transfer.

7. Planar wedge flow in a slider bearing.

8. Laminar flow over a back step. Reattachment length comparison with

experiments by Armaly and Durst®.

9. Shock reflection over a flat plate.

10.  Turbulent flow in a plane channel. Fully-developed solution at exit
compared with experiments by Laufer?,

11.  Turbulent flow induced by rotating disk in a cavity. Comparison with
experiments by Daily and Nece?’.

12.  Centripetal flow in a stator-rotor configuration. Comparison with
experiments by Dibelius et.al.28.

13.  Flow between stator and whirling rotor of a seal. 2-D results for 0, 0.5, and
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14.
15.

16.

17.
18.

19.

20.

21.

24.

26.

27.

28.

29.

30.

synchronous whirl frequencies.

Flow over a bank of tubes.

Turbulent flow in an annular seal. Comparison with experiments by
Morrison et.al.?.

Turbulent flow in a 7-cavity labyrinth seal. Comparison with experiments by
Morrison et.al.30.

Turbulent compressible flow and heat transfer in turbine disk cavities®l.
Laminar flow in a square duct with a 90° bend. Comparison with
experimental data by Taylor et.al.32,

3-D driven cavity flow with lid clearance and axial pressure gradient. Control
of flow through vortex imposition®.

Flow in cavities on a rotor for an electrical motor. Interaction of Taylor
vortices with driven cavity flow.

Flow in infinite and finite length bearings (without cavitation)

Comparison of calculated attitude angles with theory>*3.

Flow and rotordynamic coefficient calculation for straight, incompressible
seals. Comparison with results from other numerical and analytical
solutions®®.

Flow and rotordynamic coefficients in tapered compressible flow seals.
Comparison with bulk-flow theory results®’.

Rotordynamic Coefficients in a long annular incompressible flow seal.
Comparison with experimental data’®.

Calculation of entrance loss coefficients in the entrance region of a generic
seal. Effect of flow and geometry on the loss coefficient values®.

Flow coefficient and pressures in a 5 cavity, straight knife, look-through
labyrinth seal. Comparison with experimental data®.

Flow coefficients and pressures in a 2 cavity, tapered knife, look-through
labyrinth seal. Comparison with experimental data*!%2,

Flow coefficients and pressures in a 2 cavity, straight-knife, stepped labyrinth
seal. Comparison with experimental data?142,

Computations of the rotordynamic coefficients for an eccentric annular seal
with incompressible flow*.

Flow solutions in a whirling annular seal¥ and comparison with

experiments.*>- 47
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31. Numerical solutions of flow and cooling effectiveness in rim seals and disc
cavities?® and comparison with experiments.*’

32. Interaction of mainpath-secondary flow in multiply connected turbine®® disc
cavities and comparison with experimental data.’!

33. Flow and conjugate heat transfer simulations in turbine disc cavities.>2
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42  Problem Description and Sample Results

Following are the descriptions and SCISEAL results and comparisons with other
date/results where applicable. The number associated with each of the problems
refers to it’s position in the list given above.

11. T nt Flow In ing Disk i vi
Problem specification
. Calculation of the flow induced by a rotating disk in an enclosed cavity. -

Benchmark data
. Experimental measurements from Daily and Nece?’.

9
.
o

. 40 cells in the axial direction, 60 cells in the radial direction with
clustering near the walls.

Boundary conditions

. Specified angular velocity for the rotor walls.
. Wall conditions for all other boundaries.

Numerics and physical models
. Central differencing with 0.05 damping.

. Standard k- model with wall functions.
Results
. Flow geometry as shown in Figure 18a.
. Normalized radial and tangential velocities at a given radius are

shown in Figures 18b and 18¢c. Also shown in the figures are the
experimental data from Daily and Nece?.
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15. Annular Seal Flow

Problem specification
° Calculation of turbulent flow in an annular seal.

Experimental data
. Experimental data by Morrison, et al..

. 25 cells in the radial direction, 58 cells in the axial direction; cells in
radial direction clustered near the walls.

Boundary conditions
. Experimental profiles of the velocities and turbulence quantities at
inlet boundary.
. Specified pressure at the outflow boundary.
. Wall condition with specified angular speed at rotor wall.
. Stationary wall conditions at stator wall.

Numerics and physical models
. Central differencing with 0.01 damping.

o Standard two equation k- model for turbulence.
Results
. Geometry of the rotor is shown in Figure 19a, and the experimental
setup is shown in Figure 19b.
. Computed and experimental contours of the axial, azimuthal and

radial velocities are shown in Figures 20, 21 and 22, respectively.
. Figure 23 shows the computed turbulent kinetic energy profiles.
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Figure 19. Flow Details for the Annular Seal. Reynolds number based on the gap
= 27000, Taylor number = 6600, shaft speed = 3600 rpm
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near outlet (25 < x/c < 29.4).

NASA/CR—2004-213199/VOL 6 90



16. Seven Cavity Labyrinth Seal
Problem specification
. Calculation of turbulent flow in a seven-cavity labyrinth seal.

Experimental data

. Experimental data by Morrison, et al.30.
Grid
. 30 cells in the axial and radial directions per cavity.
. 10 cells in the radial clearance between the rotor tooth and the stator.
. Stretching used to cluster the grid near the rotor and stator walls.

Boundary conditions

. Experimental profiles for velocities and turbulence quantities at inlet
boundary.

. Specified pressure at outflow boundary.

. Wall condition with specified angular velocity at rotor walls.

. Wall conditions at stator wall.

Numerics and physical models

. Central differencing with 0.01 damping.

. Standard two equation k-€ model for turbulence.
Results

. Details of the rotor are shown in Figure 24a, and the experimental
setup is shown in Figure 24b.

. Computed and numerical velocity vector plots are shown in Figure 25.

. Computed and experimental contours of the axial, radial and
tangential velocities are shown in Figures 26, 27 and 28, respectively.

. Figure 29 shows computed contours of the turbulent kinetic energy.
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Figure 24. Seven Cavity Labyrinth Seal Flow. Reynolds number based on the
clearance = 28000, taylor number = 7000, shaft speed = 3600 rpm.
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Figure 26. Seven Cavity Labyrinth Seal. Contours of scaled axial velocity, u,/U.
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17.  Turbulent Compressible Flow in Turbine Disk Caviti

Problem Specification

Computation of the turbulent compressible flow is representative turbine disk
cavities, under the effect of secondary cooling flows. The effect of varying cooling
flow rates and geometry changes are assessed.

Geometry, Grid, Physical Models and Results
Please refer to Reference 31 for detailed description of the problem and results.
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19. -D Driven Cavi W Wi i I i

Problem Specification
To compute the interaction of the tip vortex and the core flow in a turbine blade
passage. The problem is simulated using a driven cavity flow with lid clearance and

axial pressure gradient. Effects of a vortex imposed upstream of the flow are
assessed for vortex strength, sense and location.

Grid, Geometry, Physical Models and Results
Please refer to Reference 31 for a detailed description of the problem and results.
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20. Flow in Cavities on a Rotor in an Electrical Motor

Problem Specification

Computation of the flow in the channels present in an electrical motor, to assess the
flow structure, generation of Taylor vortices and their interaction with the flow in
the channels.

Grid, Geometry, Physical Models and Results
Please refer to Reference 33 for a detailed description of the problem and results.
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21. Flow in Infinite and Finite Length Journal Bearings
Problem Specification

Computation of flow in A) an infinite length bearing, and B) finite length bearing
without cavitation.

Benchmark Data

Analytical results for the bearing attitude angle as given in Fuller34, (infinite length)
and Cameron®® (finite length).

Grid
A.  Infinite length case
. Rotor radius = 36 mm, nominal clearance = 0.036 mm.
. 40 cells along the circumference, 10 cells in the radial direction, 3 cells
in the axial direction.
B. Finite length case
. Rotor radius = 36 mm, nominal clearance = 0.036 mm, axial length = 36
mm (L/D = 0.5).
. 10 cells in the axial direction, 40 along the circumference, 10 cells in the

radial direction.

Boundary Conditions
Case A.
* Symmetry conditions on boundaries in axial direction,
. Rotating wall on rotor, (speed = 5,000 rpm), stationery wall on stator.

. Specified ambient pressure on both boundaries in axial direction,
. Rotating wall on rotor, (speed = 5,000 rpm), stationery wall on stator.
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Physical models
. Laminar, incompressible flow.

. Central differencing with 0.1 damping.

Results

. Results for bearing eccentricities from 0.1 to 0.95 obtained for both cases
A and B.

. Half Sommerfeld conditions used to calculate rotor pressure forces and
the resulting attitude angles. Attitude angles compared with analytical
results.

. Figure 30 shows attitude angles for Case A, together with analytical

results from Fuller.3* Figure 31 shows results for Case B, with

analytical results from Cameron®, very good/excellent agreement seen
in both cases.
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22, r mi fficients for Incompressible Ann 1
Problem Specification

Computation of the rotordynamic coefficients for a short annular grid with
incompressible flow.

Experimental Data
Experimental and numerical data from Dietzen and Nordmann.3¢

Grid
. Seal radius = 23.5 mm, seal clearance = 0.2 mm, seal length = 25 mm.
o 10 cells in axial direction, 30 in circumference direction and 5 or 12 in
seal gap depending on the turbulence model used.

Boundary Conditions
. Specified upstream/downstream pressure differential with entrance
loss coefficient = 0.5.

| Stationary wall on stator, rotating wall on rotor, rotor speed varied
from 1000-5000 rpm.

Physical Models
. Central-differencing with 0.1 damping.
. Data obtained with standard k-¢ model with wall functions and the 2-
layer model for turbulence.
. Whirling rotor, numerical shaker and perturbation model tried for

rotordynamic coefficients.
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Results

. Rotordynamic coefficients calculated at several rotor speeds.

. Numerical results for whirling rotor method shown here. These
results match very well with results from the numerical shaker
method and perturbation method.

. Figures 32 and 33 show the direct and cross-coupled stiffness
coefficients. Figures 34 and 35 show the direct and cross-coupled
damping coefficients and Figure 36 shows the direct inertia coefficient.
Also shown are results from experiments, finite difference methods
and bulk-flow theory. Very good agreement is observed in the present
results and other published results.
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23. Rotordynamic Coefficients for Tapered Seal with Compressible Flow

Problem Description

Computation of compressible flow and the rotordynamic coefficients for a tapered
annular seal.

Data
Bulk flow theory results by Nelson.3”

Grid
o Seal radius = 32.5 mm, inlet and exit clearance = 0.172 and 0.086 mm
L/D ratio varied from 0.1 to 0.4.
o 12 cells in axial, 6 cells in radial and 30 cells in circumferential
direction.

‘Boundary Conditions
. Upstream pressure = 1.52 MPa, exit pressure = 0.65 MPa, y = 1.4.

. Upstream Temperature = 650k and entrant loss factor § as given in
Reference 37.

. Rotating wall on rotor stationery wall on stator, shaft speed = 30,400
rpm.

Physical Models
. Central differencing with 0.1 damping.

. Standard k-¢ model with wall functions.

. “Numerical Shaker” method for rotordynamic coefficient calculations.
Results

. Results obtained at L/D = 0.1, 0.2 and 0.4.

. Results shown in Table 2.1 together with bulk flow theory results from

Nelson®” and good agreement between the two sets is seen.
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Table 2. Tapered Gas Seal Rotordynamic Coefficients

Nelson, 1985%7
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Present Results

L/D KN/m k N/m B CN-s/m ¢ N-s/m Exit Mach 7
Number
0.1 1150000 15429 994 - 0.043 1.00
0.2 2125500 60886 38.62 0.09 0.97
0.4 3553200 | 233820 1459 0.57 0.83




24. Rotor mi fficients of ng Ann

Problem Specification

Computation of rotordynamic coefficients for a long annular seal with
incompressible flow.

Experimental Data
. Experimental results reported by Kanemori and Iwatsubo.38

. Seal radius = 39.656 mm, clearance = 0.394 mm, length = 240 mm.
. 18 cells in axial direction, 30 in circumferential direction, 16 or 18 cells
in seal gap depending on the axial pressure differentials.

Boundary Conditions

. Specified upstream/downstream pressure differential ranging from 20
to 900 KPa with entrance loss factor § = 0.5.
. Rotating wall at rotor surface, stationary wall on stator; shaft speed =

600, 1080, 1980 and 3,000 rpm.

Physical Models
. Central differencing scheme with 0.1 damping.
. 2 turbulence models used (1) low-Re k-¢ (ii) 2 layer.
. Problem tried with (i) whirling rotor method and (ii) small
perturbation method for rotordynamics.

Results

. Similar results with both turbulence models and rotordynamics
calculation methods.

. Results from low Re k-€ model and whirling rotor method reported
here.

. Figures 37 and 38 show the direct and cross-coupled stiffness
coefficients. Figures 39 and 40 the direct and cross-coupled damping
and Figure 41 the direct inertia (mass) coefficient.

. Experimental data also plotted for comparison, very good agreement

between computational and experimental®® results.
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25. 1 i f En fici

Entrance loss factor is an empirical factor used in seal calculations to account for the
flow losses as the fluid enters the narrow seal clearance from a relatively large gap in
the entrance region. A generic seal entrance region is considered and several
geometry and flow parameters are varied to assess their effect on the loss factor.

Problem Specification

Compute the entire loss factors for a generic seal-entrance region and assess effects of
1) rotor radius-to-clearance ratio, 2) Entrance region radial width-to-clearance ratio
and 3) Flow rate on the entrance loss factor.

Grid
. Seal radius 25 mm, seal length = 25 mm, inlet region length 1.5 times
the seal radius.
. 30 cells in entrance region, 20 cells in the seal in axial direction. 5 cells

in the seal clearance radially, and 30 or 50 cells radially in entrance
region, depending on entrance-gap-to-clearance ratio.

Boundary Conditions

. Fixed downstream pressure, fully-developed turbulent axial velocity
profile at inlet of entrance region for specified mean axial velocity.
. Rotating wall on the rotor surface, stationary wall on stator.

| Inlet k & ¢ fully-developed profiles.

Physical Models

. Incompressible flow.

. Central-differencing with 0.1 damping.

J Standard k-e¢ model with wall functions.
Results

. Typical grid shown in Figure 42.

. Rotor speed at 3,000 rpm, rotational Re = 2,500 - 7,500.

. Entrance loss coefficients at different clearance-to-radius ratios,
Reynolds meters and Entrance-gap-to-clearance ratios shown in
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Table 3.
. Numerical results show:

- Radius-to-clearance ratio has the highest effect ratioT =& T
- Gap-to-clearance ratio T= § T with lower sensitivity

- for a fixed geometry, axial Re T = § { , with high sensitivity
- € range from 0.406 to 0.68.

Entrance Seal

T A A A =

NN NN

Iniet Clearance

S S L L L

_ _ =

Figure 42. Flow Domain and One of the Grids Used for the Entrance Loss
Coefficient Calculations
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Table 3. Entrance Loss Coefficients, Radius/Clearance = 50

Entrance Gap/Clearance = 50 Entrance Gap/Clearance = 100
Ugx MVS Re ax § Uax Vs Re ax g
10.814 10377 0.471 10.82 10384 0.490
16.232 15484 0.431 10.24 15584 0.488
21.618 20746 0.414 21.66 20785 0.482
26.942 25854 0.406 27.06 25970 0.48

PAG-24 12

Entrance Gap/Clearance = 50 Entrance Gap/Clearance = 100
Ugx MVS Reax £ Ugy VS Reax 4
10.80 5181 0.562 10.797 5167 0.567
16.56 7945 0.54 16.176 7761 0.558
21.595 10361 0.526 21.55 10339 0.55
26.67 12796 0.51 26.934 12664 054
32.27 15484 0.493 32.24 15469 0.537
43.062 20667 0.478 42.533 20408 0.524

PA-82-24 O

Entrance Gap/Clearance = 50 Entrance Gap/Clearance = 100
Ugy MVS Reax g Ugy Vs Regy &
10.82 3461 0.66 10.75 3438 0.68
16.19 5178 0.65 16.09 5146 0.66
21.49 6874 0.647 21.47 6874 0.65
26.74 8553 0.637 26.81 8553 0.648
32.25 10315 0.628 32.176 10292 0.64
48.33 15461 0.606 47.87 15315 0.63
64.487 20630 0.585 64.165 20630 0.624

PA-G2-24 4
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Experimental data on mass flow coefficients at different seal clearances and seal
pressure ratios are reported in Reference 40. Also reported are detailed pressure
profiles along the seal length at one pressure ratio and different seal clearances.
Computations were performed at three different pressure ratios and three clearance
values for the flow coefficients comparison. Comparison of pressure profiles was
done at four different clearance values. The computed results were compared with

experimental data and excellent agreement was obtained. Flow geometry details and
results of the calculations are discussed below.

Problem Specification
Computation of steady-state turbulent air flow in a 5 cavity, look-through, planar
labyrinth seal at different pressure ratios and tip gaps.

Experimental Data

Experimental results by Willig et al.0

Grid
30 x 30 cells in each cavity, 8 to 12 cells in the tip gap, 30 cells in axial direction in the
upstream and downstream, portions. Appropriate clustering of cells near walls.

Boundary Conditions

o Downstream pressure kept fixed, upstream pressure varied to match
specified pressure ratio across the seal.

. Stationary walls on stator and rotor.

. Inlet k and € values specified using estimated inlet velocities.

Physical Models

. Compressible flow.
. Central differencing scheme with 0.1 damping.
. k-e model of turbulence with wall functions.
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Results
. Flow geometry and parameters are shown in Figure 43.

. Flow solutions obtained at several pressure ratios across the seal, and at
different tip gap values.

. Figure 44 shows the pressure profiles in the seal for a pressure ratio
P,/ Py of 1.38 for four tip gaps. Computational and experimental values
plotted for comparison.

. Figure 45 shows the non-dimensional mass flow coefficient (¢) (see
Reference 40 for definition) as a function of the seal pressure ratio at
different tip gaps.

g

¥
frzziz Znl

Figure 43.  Details of the Flow Geomeiry for Five Cavity Look-Through Labyrinth
Seal. b=2.5,h=10.5,t=12,s = 0.5 - 2.52 (all dimensions in mm)
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1.0

Experimental data
Symbols: computed results
a fipgap = 0.5 mm
2 tipgap = 1.02 mm
0.8 7 a tipgap = 1.51 mm
v tip gap = 2.52 mm
0.6
Ap
7-
APM
0.4 -
02
0.0 T T T T Tavsgaz |
0 1 2 3 4 5 6

cavity number

Figure 44. Non-Dimensionalized Pressure Drop at the Centers of the Cavities for
a Pressure Ratio of 1.38

1.0 7 ———£xperimental data
Symbols: computed resuits
a sealgap = 0.5 mm

¢ sealgap = 1.51 mm

0.8 - A seal gap = 2.52 mm

o.s—//‘j/‘/—/é

0.2

a0 T T asana |

]
1.0 1.5 20 2.5 3.0
seal pressure ratio

Figure 45. Mass Flow Coefficient (¢) as a Function of Pressure Ratio Across the
Seal
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Experimental?! and computational®? results for this case are available.
Experimental data includes mass flow coefficients at different pressure ratios across
the seal, and detailed pressure measurements in the seal for a fixed pressure ratio.
Computations were performed at three different pressure ratios for comparison of
flow coefficients as well as pressure profiles. Very good agreement was obtained
between the computed and experimental pressure profiles, while the flow
coefficient results show a good comparison, with some under prediction in
computed results. Computational details and the results are given below.

Problem Specification
Computation of steady-state turbulent air flow in a two cavity, look-through, planar
labyrinth seal with tapered knives.

Experimental Data
Experimental data by Tipton, et al.4!

Grid

. 26 cells in the axial and 50 cells in the radial direction per cavity and 210
cells in the gap.

. 51 and 75 cells in the axial direction in the upstream and downstream
directions, respectively.

. Grid is clustered near the rotor and stator walls.

Boundary Conditions:

. Exit pressure fixed, upstream pressure varied to match specified
pressure ratio across the seal.

. Inlet k and € values specified using estimated inlet velocities.

. Wall conditions are specified along the stator and rotor walls.

Numerical and Physical Models:
. Central differencing with 0.1 damping.
. k-e model of turbulence with standard wall functions.
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Results:

. Details of the flow domain are shown in Figure 46.

. Figures 47 and 48 show the pressure drops along the direction of flow
(as a function of inlet pressure) measured near the stator and rotor
surfaces, respectively. The inlet/exit pressure ratio is 2.0.

o The leakage mass flow rates through the seals for different inlet/exit
pressure ratios are plotted in the form of a flow parameter, ¢ (see
Reference 41 for definition) in Figure 49.

} ——oau 1[ LIo |

— i

|
FLOW ——— .2
99.g° i

{

Figure 46. Flow Domain for the 3-Knife Labyrinth Seal. All dimensions are in
inches. Upstream and downstream region lengths are 3 and 5 inches,
respectively.
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Figure 47. Pressure Drop Along the Stator Surface Plotted as a Function of Inlet
Pressure Along the Seal Length. A: mid-point of 1st knife; B: mid-
point of 1st cavity; C: mid-point of 2nd knife; D: mid-point of 2nd
cavity; E: mid-point of 3rd knife; F: half of the cavity width
downstream of 3rd knife. Inlet/Exit pressure ration = 2.0
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Figure 48.  Pressure Drop Along the Rotor Surface Plotted as a Function of Inlet
Pressure Along the Seal Length. A: mid-point of 1st knife; B: mid-
point of 1st cavity; C: mid-point of 2nd knife; D: mid-point of 2nd
cavity; E: mid-point of 3rd knife; F: half of the cavity width
downstream of 3rd knife. Inlet/Exit pressure ration = 2.0

NASA/CR—2004-213199/VOL 6 124



0.57
0.4 § o o o °
A A
o A
Ii T 0.34 s
<%
e’
< a
g  0.24
= o
B
2 o Experimental
f.l-? 0.1 A Numerical
0.0 T T 1 | 1
1 2 3 4 5

Pressure Ratio (RnjefPexit)

Figure 49. Leakage Mass Flow Rates
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As in test case 26, experimental and computational data is available on flow
coefficients and pressure profile in the seal for the stepped seal. Computations were
done at three different pressure ratios for flow coefficients as well as pressure values
in the seal. The comparison of flow coefficients is good, with somewhat higher flow
coefficients predicted by the CFD code. This could partly be due to the upstream and
downstream boundary condition definitions. The comparison of the pressures in
the seal is very good. Details of the computations are shown below.

Problem Specification
Computational of steady-state turbulent air flow in a two cavity, stepped labyrinth
seal with rectangular knives.

Experimental Data
Experimental data by Tipton, et al.4!

Grid

. 26 cells in the axial direction in each cavity, 24 radial cells before the
step and 53 radial cells after the step in the first cavity; 43 radial cells
before the step and 62 radial cells after the step in the second cavity.

. 10 cells in the radial clearance and 5 cells in the axial direction between
each knife tip and the stator wall.

. A 40 x 44 grid in the upstream region and a 60 x 52 grid in the
downstream region.

. Grid is clustered near the rotor and stator walls.

Boundary Conditions

. Exit pressure fixed, upstream pressure varied to match specified ratio
across the seal.

. Inlet values of k and ¢ are calculated using estimated inlet velocities.

. Wall conditions are specified along the stator and rotor walls.

Numerical and Physical Models

. Central differencing with 0.1 damping.
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. k-¢ model for turbulence with standard wall functions.

Results
. Details of the flow domain are shown in Figure 50
. Figures 51 and 52 show the static pressures along the direction of flow

(as a function on inlet pressure) measured near the stator and rotor
surfaces, respectively. The inlet/exit pressure ratio is 2.0.

. The variation in flow parameter, ¢ (see Reference 41 for definition),
with the inlet/exit pressure ratio is plotted in Figure 53.

Q.
1

Toss]

1

1.4

|

——

Figure 50. Details of the Flow Geometry of the Stepped Labyrinth Seal. All
dimensions are in inches. Inlet and exit region lengths are 3 and 5
inches, respectively.
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Figure 51.  Pressure Drop Along the Stator Surface Plotted as a Function of Inlet
Pressure Along the Seal Length. A: location upstream of 1st knife
equidistant to location C from location B; B: mid-point of 1st knife; C:
mid-point of region in 1st cavity before step; D: mid-point of region in
1st cavity after step; F: mid-pionot of region in 2nd cavity before step;
G: mid-point region in 2nd cavity after step; H: mid-point of 3rd knife;
I: location downstream of 3rd knife equidistant to location G from
location H. Inlet/exit pressure ration = 2.0
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Figure 52.  Pressure Drop Along the Rotor Surface Plotted as a Function of Inlet
Pressure Along the Seal Length. B: mid-point of 1st knife; C: mid-point
region in 1st cavity before step; D: mid-point of region in 1st cavity after
step; E: mid-point of 2nd knife; F: mid-point of region in 2nd cavity
before step; G: mid-point of region in 2nd cavity after step; H: mid-
point of 3rd knife. Inlet/exit pressure ratio = 2.0
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Figure 53. Flow Parameter as a Function of Inlet/Exit Pressure Ratio
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Problem Specification
Computations of rotordynamics coefficients for an annular seal and incompressible

flow at different static eccentricities.

Experimental Data
Experimental and numerical results as reported by Simon and Frene.43

Grid
. Seal radius = 80 mm, seal clearance = 0.36 mm, seal length = 40 mm.
L 10 cells in axial direction, 5 in radial gap and 30 in circumferential
direction.

Boundary Conditions

. Specified upstream and downstream pressure values with an extreme
loss factor € = 0.5.

. Stationery wall on stator, rotating wall on rotor with shaft speed = 4,000
rpm.

Physical Models
. Central differencing with 0.1 damping.

. Standard k-e model with wall functions.
. Perturbation method for rotordynamic coefficients.
Results
. Rotordynamics coefficients computer at static eccentricities ranging
from 0 to 0.7.
. Direct stiffness K, and K, as well as K, and K, shown in Figures 54

through 57. Also shown are experimental results and other numerical
results for comparison. Very good agreement between present results
and experimental results is seen.
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. Damping coefficients Cy,, C,,, C;, and C,, shown in Figures 58 through

61. Comparison with other numerical results also shown, very good
agreement is seen between the data sets.
. Inertia (mass) coefficient M, and M,, shown in Figures 62 and 63.
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Figure 54. Direct Stiffness, K,,, Annular Eccentric Seal
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Figure 55. Direct Stiffness, K,,, Annular Eccentric Seal
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Figure 56. Cross Coupled Stiffness, K, Annular Eccentric Seal
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Figure 57. Cross Coupled Stiffness, K, , Annular Eccentric Seal
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Figure 58. Direct Damping, C,,, Annular Eccentric Seal

2. 0E+0 4+
N-s/m
1. 5E+04 T
i
e e
1. 0E+04 -
i — SCISEAL
— - —Neison and Nguyen
== = = == Simon and Frene
— — — — Nordmann
0. 0E+Q0
0.0 a2 0.4 as "™ o8
Eccentricity, €

Figure 59. Direct Damping, C,,, Annular Eccentric Seal
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Figure 60. Cross Coupled Damping, C,,, Annular Eccentric Seal
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Figure 61. Cross Coupled Damping, C,, Annular Eccentric Seal
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Figure 63. Direct Inertia, M,,, Annular Eccentric Seal
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30. Flow in a Whirling Annular Seal

Problem Specification
Computation of the flow in a whirling annular seal to investigate the behavior and

comparison with experimental velocity and pressure measurements.

Grid, Geometry, Physical Models and Results
Please refer to Reference 45 for detailed description of the problem, boundary
conditions and results.
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Problem Specification
Evaluation of the flow in a generic disc cavity and rim seal configuration. Use

passive scalar transport of a tracer gas to evaluate the cooling effectiveness of four

different types of rim seals at different flow conditions and compare with
experiments.

Grid, Geometry, Physical Models and Results
Please refer to Reference 48 for a detailed description of the problem and results

NASA/CR—2004-213199/VOL 6 139



3. Interaction of Secondary Fl { Mainpath Flow in Multiple Disc Caviti

Problem Specification
Analysis of the flow dynamics in a multi-cavity turbine disc configuration. Account

for the coupling between cavities and main path flow. Use tracer gas transport to
identify flow features and compare with experimental date.

Grid, Geometry, Physical Models and Results
Please refer to Reference 50 for a detailed description of the problem and results
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33. Flow an nj Transfer Analysis i ine Di viti

Problem Description
Simulation of flow and heat transfer in the turbine disc cavities of an actual turbine

engine (Allison T-56). Evaluate mass flow rates and gas temperatures at various rim
seals, effect of interstage labyrinth seal and conjugate heat transfer in labyrinth seal
support discs.

Grid, Geometry, Physical Models and Results
Please refer to Reference 52 for a detailed description of the problem and results
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